Free Access
Issue
RAIRO. Inform. théor.
Volume 16, Number 4, 1982
Page(s) 331 - 347
DOI https://doi.org/10.1051/ita/1982160403311
Published online 01 February 2017
  1. 1. N. DERSHOWITZ, Ordering for Term Rewriting Systems, Proc. 20th Symposium on Foundations of Computer Science, 1979, pp. 123-131, also in Theoritical Computer Science, Vol. 17, 1982, pp. 279-301. [MR: 648438] [Zbl: 0525.68054] [Google Scholar]
  2. 2. N. DERSHOWITZ, A note on Simplification Orderings, Inform. Proc. Ltrs., Vol. 9, 1979, pp. 212-215. [MR: 552535] [Zbl: 0433.68044] [Google Scholar]
  3. 3. J. FRANÇON, G. VIENNOT and J. VUILLEMIN, Description and Analysis of an Efficient Priority Queues Representation, Proc. 19th Symposium of Foundations of Computer Science, 1978, pp. 1-7. [MR: 539825] [Google Scholar]
  4. 4. G. HUET, A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm, Rapport INRIA 25, 1980. [Zbl: 0465.68014] [MR: 636177] [Google Scholar]
  5. 5. G. HUET and J. HULLOT, Proof by Induction in Equational Theories with Constructors, Proc. 21th Symposium on Foundations of Computer Science, 1980. [Zbl: 0532.68041] [Google Scholar]
  6. 6. G. HUET and D. C. OPPEN, Equations and Rewrite Rules: a Survey, in Formal Languages perspectives and Open Problems, R. BOOK, Ed., Academic Press, 1980. [Google Scholar]
  7. 7. D. E. KNUTH, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison Wesley, Reading, Mass., 1968. [Zbl: 0191.17903] [MR: 378456] [Google Scholar]
  8. 8. D. E. KNUTH and P. BENDIX, Simple Word Problems in Universal Algebra, in Computational Problems in Abstract Algebra, J. LEECH, Ed., Pergamon Press, 1970, pp. 263-297. [MR: 255472] [Zbl: 0188.04902] [Google Scholar]
  9. 9. J. B. KRUSKAL, Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi's Conjecture, Trans. Amer. Math. Soc., Vol. 95, 1960, pp. 210-225. [MR: 111704] [Zbl: 0158.27002] [Google Scholar]
  10. 10. P. LESCANNE, Two Implementations of the Recursive Path Ordering on Monadic Terms, 19th Annual Allerton Conf. on Communication, Control, and Computing, Allerton House, Monticello, Illinois, 1981. [Google Scholar]
  11. 11. P. LESCANNE, Decomposition Ordering as a Tool to prove the Termination of Rewriting Systems, 7th IJCAI, Vancouver, Canada, 1981, pp. 548-550. [Google Scholar]
  12. 12. P. LESCANNE and F. REINIG, A Well-Founded Recursively Defined Ordering on First Order Terms, Centre de Recherche en Informatique de Nancy, France, CRIN 80-R-005. [Google Scholar]
  13. 13. D. L. MUSSER, On Proving Inductive Properties of Abstract Data Types, Proc. 7th ACM Symposium on Principles of Programming Languages, 1980. [Google Scholar]
  14. 14. C. St. J. A. NASH-WILLIAM, On Well-Quasi-Ordering on Finite Trees, Proc. Cambridge Philos. Soc., Vol. 60, 1964, pp. 833-835. [MR: 153601] [Zbl: 0122.25001] [Google Scholar]
  15. 15. D. PLAISTED, Well-Founded Orderings for Proving Termination of Systems of Rewrite Rules, Dept of Computer Science Report 78-932, U. of Illinois at Urbana-Champaign, July 1978. [Google Scholar]
  16. 16. D. PLAISTED, A Recursively Defined Ordering for Proving Termination of Term Rewriting Systems, Dept of Computer Science Report 78-943, U. of Illinois at Urbana-Champaign, Sept. 1978. [Google Scholar]
  17. 17. F. REINIG, Les ordres de décomposition: un outil incrémental pour prouver la terminaison finie de systèmes de réécriture de termes, Thèse, Université de Nancy, 1981. [Google Scholar]
  18. 18. J.-P. JOUANNAUD and P. LESCANNE, On Multiset Orderings, in Inform. Proc. Ltrs., Vol. 15, 1982, pp. 57-63. [MR: 675869] [Zbl: 0486.68041] [Google Scholar]
  19. 19. J.-P. JOUANNAUD, P. LESCANNE and F. REINIG, Recursive Decomposition Ordering, IFIP Conf. on Formal Description of Programming Concepts, Garmisch-Partenkirchen, Germany, 1982. [MR: 787625] [Zbl: 0513.68026] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.