Free Access
Issue
RAIRO. Inform. théor.
Volume 16, Number 3, 1982
Page(s) 201 - 223
DOI https://doi.org/10.1051/ita/1982160302011
Published online 01 February 2017
  1. 1. K. J. ASTROM, Introduction to Stochastic Control Theory, NewYork, London, Academic Press, 1970. [MR: 270799] [Zbl: 0226.93027] [Google Scholar]
  2. 2. D. E. BARTON and F. N. DAVID, Combinatorial Chance, London, Griffin, 1972. [Google Scholar]
  3. 3. A. T. BHARUKA-REID, Elements of the Theory of Markov Processes and their Applications, London, McGraw-Hill, 1960. [MR: 112177] [Zbl: 0095.32803] [Google Scholar]
  4. 4. S. A. COOK, The Complexity of Theorem-Proving Procedures, Proc. third A.C.M. Symposium on Theory of Computing, 1971, pp. 151-158. [Zbl: 0253.68020] [Google Scholar]
  5. 5. H. KRAMER, Mathematical Methods of Statistics, Princeton, Princeton University Press, 1945. [Zbl: 0063.01014] [Google Scholar]
  6. 6. Z. GALIL, On Enumeration Procedures for Theorem Proving and for Integer Programming, Automata Languages and Programming Third International Colloquim, S. MICHAELSON and R. MILNER, Eds., Edinburg University Press, 1976, pp. 355-381. [Zbl: 0358.68132] [Google Scholar]
  7. 7. M. R. GAREY and D. S. JOHNSON, Computers and Intractability, San Francisco, W. H. Freeman and C., 1979. [MR: 519066] [Zbl: 0411.68039] [Google Scholar]
  8. 8. R. M. KARP, Reducibility among Combinatorial Problems, in Complexity of Conputer Computations, R. E. MILLER and J. W. THATCHER, Eds., New York, Plenum Press, 1972, pp. 85-104. [MR: 378476] [Zbl: 0366.68041] [Google Scholar]
  9. 9. R. M. KARP, On the Computational Complexity of Combinatorial Problems, Networks, Vol. 5, 1974, pp. 45-68. [Zbl: 0324.05003] [Google Scholar]
  10. 10. R. M. KARP, The Probabilistic Analysis of some Combinatorial Search Algorithm, Memorandum No. ERL-M581, University of California, Berkeley, 1976. [Zbl: 0368.68035] [MR: 445898] [Google Scholar]
  11. 11. V. F. KOLCHIN, B. A. SEVASTIYANOV and V. P. CHISTIANOV, Random Allocations, NewYork, John Wiley, 1978. [Zbl: 0376.60003] [Google Scholar]
  12. 12. H. L. LEWIS, Satisfiability Problems for Propositional Calculi, Math. System Theory, Vol. 13, 1979, pp. 45-53. [MR: 548548] [Zbl: 0428.03035] [Google Scholar]
  13. 13. R. OTTER, The Multiplicative Process, Ann. Math. Statist., Vol. 20, 1949, pp. 206-224. [MR: 30716] [Zbl: 0033.38301] [Google Scholar]
  14. 14. T. J. SHAEFFER, The Complexity of Statisfiability Problems, X Sym. on Theory of Computing, 1978, pp. 216-226. [Google Scholar]
  15. 15. D. L. SNYDER Random Point Processes, New York, John Wiley, 1975. [MR: 501325] [Zbl: 0385.60052] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.