Free Access
Issue
RAIRO. Inform. théor.
Volume 15, Number 4, 1981
Page(s) 355 - 371
DOI https://doi.org/10.1051/ita/1981150403551
Published online 01 February 2017
  1. 1. J. AVENHAUS and K. MADLENER, Subrekursive Komplexität bei Gruppen I. Gruppen mit vorgeschriebener Komplexität. Acta Inf., Vol. 9, 1977, pp. 87-104. [MR: 498062] [Zbl: 0371.02019] [Google Scholar]
  2. 2. J. AVENHAUS and K. MADLENER, Algorithmische Probleme bei Einrelatorgruppen und ihre Komplexität, Arch. math. Logik, Vol. 19. 1978, pp. 3-12. [EuDML: 137940] [MR: 514453] [Zbl: 0396.03040] [Google Scholar]
  3. 3. W. W. BOONE, Between Logic and Group Theory. Proc. Second Internat. Conf. Theory of Groups, Camberra, 1973. L.N.M. 372, pp. 90-102. [MR: 354880] [Zbl: 0298.20027] [Google Scholar]
  4. 4. F. B. CANNONITO and R. W. GATTERDAM, The Computability of Group constructions I, in Word Problems, W. W. BOONE, F. B. CANNONITO and R. LYNDON, Eds, 1973, pp. 365-400, Amsterdam-London, North Holland. [MR: 446938] [Zbl: 0274.02017] [Google Scholar]
  5. 5. F. B. CANNONITO and R. W. GATTERDAM, The Word Problem and Power Problem in 1 - Relator Groups are Primitive Recursive, Pacific J. Math. Vol. 61. 1975. pp. 351-359. [MR: 401452] [Zbl: 0335.02029] [Google Scholar]
  6. 6. R. C. LYNDON and P. E. SCHUPP, Combinatorial Group Theory, Berlin, Heidelberg, New York, 1977. [MR: 577064] [Zbl: 0368.20023] [Google Scholar]
  7. 7. C. P. SCHNORR, Rekursive Funktionen und ihre Komplexität, Teubner, 1974. [MR: 462927] [Zbl: 0299.02043] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.