Free Access
Issue
RAIRO. Inform. théor.
Volume 13, Number 1, 1979
Page(s) 49 - 67
DOI https://doi.org/10.1051/ita/1979130100491
Published online 01 February 2017
  1. 1. G. AUSIELLO, Complessità di calcolo delle funzioni, Boringhieri, Torino, 1975.
  2. 2. P. AXT, Iteration of Primitive Recursion, Zeisch. f. math. Logik und Grundl. d. Math., Vol. 9, 1965, pp. 253-255. [MR: 195719] [Zbl: 0144.00201]
  3. 3. H. BECK, Zur Entscheidbarkeit der funktionalen Aquivalenz, Automata Theory and Formal Languages 2nd GI Conference, Lecture Notes in Computer Science, Vol. 33, 1975, pp. 127-133. [MR: 432436] [Zbl: 0312.68049]
  4. 4. J. P. CLEAVE, A Hierarchy of Primitive Recursive Functions, Zeitsch. f. math. Logik und Grundl. d. Math., Vol. 9, 1963, pp. 331-345. [MR: 159754] [Zbl: 0124.00303]
  5. 5. A. COBHAM, The Intrinsic Computational Difficulty of Functions, Proc. Congress on Logic, Methodology and Philosophy of Science, Haifa, Israel, 1964, North-Holland, Amsterdam, 1964, pp. 24-30. [MR: 207561] [Zbl: 0192.08702]
  6. 6. S. EILENBERG and C. C. ELGOT, Iteration and Recursion, Proc. Nat.Acad. Sci.U.S.A., Vol. 61, 1968pp. 378-379. [MR: 241291] [Zbl: 0193.31001]
  7. 7. S. EILENBERG and C. C. ELGOT, Recursiveness, Academic Press, New York, 1970. [MR: 268040] [Zbl: 0211.31101]
  8. 8. G. GERMANO and A. MAGGIOLO-SCHETTINI, Quelques caractérisations des fonctions récursives partielles, C. R. Acad. Sc. Paris, t. 276, série A, 1973, pp. 1325-1327. [MR: 363836] [Zbl: 0324.02025]
  9. 9. G. GERMANO and A. MAGGIOLO-SCHETTINI, Sequence-to-Sequence Recursiveness, Information Processing Lett., Vol. 4, 1975, pp. 1-6. [MR: 387037] [Zbl: 0311.02047]
  10. 10. G. GERMANO and A. MAGGIOLO-SCHETTINI, Proving a Compiler Correct: a Simple Approach, J. Comput. System Sc,. Vol. 10, 1975, pp. 370-383. [MR: 371136] [Zbl: 0304.68022]
  11. 11. A. GRZEGORCZYK, Some Classes of Recursive Functions, Rozprawy Mathematyczne, Vol. 4, 1953, pp.1-45. [EuDML: 219317] [MR: 60426] [Zbl: 0052.24902]
  12. 12. H. HUWIG and V. CLAUS, Das Äquivalenzproblem für spezielle Klassen von LOOP-Programmen, Theoretical Computer Science 3rd GI Conference, Lecture Notes in Computer Science, Vol. 48, 1977, pp. 73-82. [MR: 520895] [Zbl: 0359.68019]
  13. 13. A. R. MEYER and D. M. RITCHIE, The Complexity of LOOP Programs, Proc. 22nd A.C.M. Nat: Conference, Washington, D.C., 1968, pp. 465-469.
  14. 14. H. MÜLLER, Characterization of the Elementary Functions in Terms of Nesting of Primitive Recursions, Recursive Function Theory Newsletters, Vol. 5, 1973.
  15. 15. R. W. RITCHIE, Classes of Recursive Functions Based on Ackermann's Function, Pacific J. Math., Vol. 15, 1965, pp. 1027-1044. [MR: 193013] [Zbl: 0133.24903]
  16. 16. H. SCHWICHTENBERG, Rekursionszahlen und die Grzegorczyk Hierarchie, Arch. Math. Logik Grundlagenforsch., Vol. 12, 1969, pp. 85-97. [EuDML: 137821] [MR: 253900] [Zbl: 0213.01801]
  17. 17. D. TSICHRITZIS, A note on Comparison of Subrecursive Hiérarchies, Information Processing Lett., Vol. 1, 1971, pp. 42-44. [MR: 305995] [Zbl: 0233.68016]
  18. 18. D. TSICHRITZIS, The Equivalence Problem of Simple Programs, J. Ass. Comput. Mach, Vol. 17, 1970, pp. 729-738. [MR: 321346] [Zbl: 0209.02001]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.