Issue |
RAIRO-Theor. Inf. Appl.
Volume 45, Number 2, April-June 2011
|
|
---|---|---|
Page(s) | 181 - 196 | |
DOI | https://doi.org/10.1051/ita/2011006 | |
Published online | 28 February 2011 |
An improved derandomized approximation algorithm for the max-controlled set problem
Fluminense Federal University, Institute of Computing,
Rua Passo da Pátria 156, Bloco E, 24210-230, Niterói, RJ, Brazil; mart@dcc.ic.uff.br; fabio@ic.uff.br
Received:
16
June
2009
Accepted:
4
October
2010
A vertex i of a graph G = (V,E) is said to be controlled by if the majority of the elements of
the neighborhood of i (including itself) belong to M. The set
M is a monopoly in G if every vertex
is
controlled by M. Given a set
and two graphs
G1 = (
) and G2 = (
) where
, the
monopoly verification problem (mvp) consists of deciding
whether there exists a sandwich graph G = (V,E) (i.e., a graph
where
) such that M is a monopoly
in G = (V,E). If the answer to the mvp is No, we then
consider the max-controlled set problem (mcsp), whose
objective is to find a sandwich graph G = (V,E) such that the
number of vertices of G controlled by M is maximized. The mvp can be solved in polynomial time; the mcsp, however, is
NP-hard. In this work, we present a deterministic polynomial time
approximation algorithm for the mcsp with ratio
+
, where n=|V|>4. (The
case
is solved exactly by considering the parameterized
version of the mcsp.) The algorithm is obtained through the
use of randomized rounding and derandomization techniques based on
the method of conditional expectations. Additionally, we show how
to improve this ratio if good estimates of expectation are obtained in advance.
Mathematics Subject Classification: 68W20 / 68W25
Key words: Derandomization / Monte Carlo method / Randomized rounding / sandwich problems
© EDP Sciences, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.