Issue |
RAIRO-Theor. Inf. Appl.
Volume 33, Number 1, January Fabruary 1999
|
|
---|---|---|
Page(s) | 33 - 45 | |
DOI | https://doi.org/10.1051/ita:1999104 | |
Published online | 15 August 2002 |
On the Average Case Complexity of Some P-complete Problems
Departament de Llenguatges i Sistemes
Informàtics, Universitat Politècnica de Catalunya, Campus Nord – C6,
Jordi Girona Salgado 1-3, 08034 Barcelona, Spain; fatos@lsi.upc.es.
Received:
July
1997
Accepted:
July
1998
We show that some classical P-complete problems can be solved efficiently in average NC. The probabilistic model we consider is the sample space of input descriptions of the problem with the underlying distribution being the uniform one. We present parallel algorithms that use a polynomial number of processors and have expected time upper bounded by (e ln 4 + o(1))log n, asymptotically with high probability, where n is the instance size.
Résumé
Nous montrons que quelques problèmes classiques qui sont P-complets peuvent être résolus efficacement en average NC. Le mo dèle probabiliste que nous considérons est l'espace de descriptions des entrées du problème sous la distribution uniforme. Nous présentons des algorithmes parallèles qui utilisent un nombre polynomial de processeurs dont leur temps espéré est majoré par (e ln 4 + o(1))log n, assymptotiquement avec haute probabilité, où n est la taille de l'entrée.
© EDP Sciences, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.