The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
J. Aczél , Z. Daróczy
RAIRO. Inform. théor., 12 2 (1978) 149-155
Published online: 2017-02-01
This article has been cited by the following article(s):
22 articles
Entropy and monotonicity in artificial intelligence
Bernadette Bouchon-Meunier and Christophe Marsala International Journal of Approximate Reasoning 124 111 (2020) https://doi.org/10.1016/j.ijar.2020.04.008
Adaptive decision making via entropy minimization
Armen E. Allahverdyan, Aram Galstyan, Ali E. Abbas and Zbigniew R. Struzik International Journal of Approximate Reasoning 103 270 (2018) https://doi.org/10.1016/j.ijar.2018.10.001
Handbook of Functional Equations
Eszter Gselmann and Gyula Maksa Springer Optimization and Its Applications, Handbook of Functional Equations 96 199 (2014) https://doi.org/10.1007/978-1-4939-1286-5_10
Axiomatic Characterizations of Information Measures
Imre Csiszár Entropy 10 (3) 261 (2008) https://doi.org/10.3390/e10030261
Modern Information Processing
János Aczél Modern Information Processing 3 (2006) https://doi.org/10.1016/B978-044452075-3/50001-7
Handbook of Measure Theory
Wolfgang Sander Handbook of Measure Theory 1523 (2002) https://doi.org/10.1016/B978-044450263-6/50038-5
On a generalization of the Shannon functional inequality
P.L. Kannappan and P.K. Sahoo Journal of Mathematical Analysis and Applications 140 (2) 341 (1989) https://doi.org/10.1016/0022-247X(89)90068-1
Recursive inset entropies of multiplicative type on open domains
B. R. Ebanks, PL. Kannappan and C. T. Ng Aequationes Mathematicae 36 (2-3) 268 (1988) https://doi.org/10.1007/BF01836096
Uncertainty in Knowledge-Based Systems
P. Gomel Lecture Notes in Computer Science, Uncertainty in Knowledge-Based Systems 286 395 (1987) https://doi.org/10.1007/3-540-18579-8_37
The fundamental equation of information and its generalizations
Wolfgang Sander Aequationes Mathematicae 33 (1) 150 (1987) https://doi.org/10.1007/BF01836160
Uncertainty in Knowledge-Based Systems
J. Aczél Lecture Notes in Computer Science, Uncertainty in Knowledge-Based Systems 286 357 (1987) https://doi.org/10.1007/3-540-18579-8_35
The fundamental equation of information and its generalizations
Wolfgang Sander Aequationes Mathematicae 33 (2-3) 150 (1987) https://doi.org/10.1007/BF01840494
Entropie totale, probabilité relative, maximum de vraisemblance et décision bayesienne subjective. Application au calcul des bornes des probabilités d’erreur de décodage
Guy Jumarie Annales des Télécommunications 41 (9-10) 493 (1986) https://doi.org/10.1007/BF02998753
Measures of inset information on open domains-II: Additive inset entropies with measurable sum property
Bruce R. Ebanks Probability Theory and Related Fields 73 (4) 517 (1986) https://doi.org/10.1007/BF00324849
Measures of inset information on the open domain — I: Inset entropies and information functions of all degrees
B. R. Ebanks and Gy. Maska Aequationes Mathematicae 30 (1) 187 (1986) https://doi.org/10.1007/BF02189925
Additive and subadditive entropies for discreten-dimensional random vectors
B. Forte and R. Gupta Aequationes Mathematicae 28 (1) 269 (1985) https://doi.org/10.1007/BF02189420
Entropies with and without probabilities
Bruno Forte Information Processing & Management 20 (3) 397 (1984) https://doi.org/10.1016/0306-4573(84)90070-0
Measuring information beyond communication theory—Why some generalized information measures may be useful, others not
J. Aczél Aequationes Mathematicae 27 (1) 1 (1984) https://doi.org/10.1007/BF02192655
Functional Equations: History, Applications and Theory
J. Aczél Functional Equations: History, Applications and Theory 175 (1984) https://doi.org/10.1007/978-94-009-6320-7_15
Measuring information beyond communication theory
Janos Aczél Information Processing & Management 20 (3) 383 (1984) https://doi.org/10.1016/0306-4573(84)90069-4
A mixed theory of information — VIII: Inset measures depending upon several distributions
Pl. Kannappan and W. Sander Aequationes Mathematicae 25 (1) 177 (1982) https://doi.org/10.1007/BF02189614
Notes on generalized information functions
J. Aczél Aequationes Mathematicae 22 (1) 97 (1981) https://doi.org/10.1007/BF02190166