RAIRO-Theor. Inf. Appl.
Volume 58, 2024
12th International Workshop on Non-Classical Models of Automata and Applications (NCMA 2022)
Article Number 5
Number of page(s) 24
Published online 15 March 2024
  1. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17 (1973) 525–532. [CrossRef] [Google Scholar]
  2. Y. Lecerf, Logique mathématique: Machines de Turing réversible. C. R. Séances Acad. Sci. 257 (1963) 2597–2600. [Google Scholar]
  3. K. Morita, Reversible simulation of one-dimensional irreversible cellular automata. Theor. Comput. Sci. 148 (1995) 157–163. [CrossRef] [Google Scholar]
  4. D. Angluin, Inference of reversible languages. J. ACM 29 (1982) 741–765. [CrossRef] [Google Scholar]
  5. A. Kondacs and J. Watrous, On the power of quantum finite state automata. in FOCS 1997. IEEE Computer Society (1997) 66–75. [Google Scholar]
  6. M. Holzer, S. Jakobi and M. Kutrib, Minimal reversible deterministic finite automata. Int. J. Found. Comput. Sci. 29 (2018) 251–270. [CrossRef] [Google Scholar]
  7. G.J. Lavado, G. Pighizzini and L. Prigioniero, Minimal and reduced reversible automata. J. Autom. Lang. Comb. 22 (2017) 145–168. [MathSciNet] [Google Scholar]
  8. G.J. Lavado and L. Prigioniero, Concise representations of reversible automata. Int. J. Found. Comput. Sci. 30 (2019) 1157–1175. [CrossRef] [Google Scholar]
  9. A. Bertoni and M. Carpentieri, Regular languages accepted by quantum automata. Inf. Comput. 165 (2001) 174–182. [CrossRef] [Google Scholar]
  10. M. Hirvensalo, Quantum automata with open time evolution. Int. J. Nat. Comput. Res. 1 (2010) 70–85. [CrossRef] [Google Scholar]
  11. A.C.C. Say and A. Yakaryilmaz, Quantum finite automata: A modern introduction, edited by C.S. Calude, R. Freivalds and K. Iwama. Computing with New Resources. Vol. 8808 of LNCS. Springer (2014) 208–222. [Google Scholar]
  12. Ö. Yilmaz, F. Kiyak, M. Üngör and A.C.C. Say, Energy complexity of regular language recognition. edited by P. Caron and L. Mignot. Implementation and Application of Automata (CIAA 2022). Vol. 13266 of LNCS. Springer (2022) 200–211. [CrossRef] [Google Scholar]
  13. C. Mereghetti and B. Palano, Guest column: quantum finite automata: from theory to practice. SIGACT News 52 (2021) 38–59. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Kutrib and A. Malcher, Reversible pushdown automata. J. Comput. Syst. Sci. 78 (2012) 1814–1827. [CrossRef] [Google Scholar]
  15. M.L. Minsky, Recursive unsolvability of Post's problem of ‘tag’ and other topics in the theory of Turing machines. Ann. Math. 74 (1961) 437–455. [CrossRef] [MathSciNet] [Google Scholar]
  16. S.A. Greibach, Remarks on the complexity of nondeterministic counter languages. Theor. Comput. Sci. 1 (1976) 269–288. [CrossRef] [Google Scholar]
  17. H. Petersen, Simulations by time-bounded counter machines. Int. J. Found. Comput. Sci. 22 (2011) 395–409. [CrossRef] [Google Scholar]
  18. L. Breveglieri, A. Cherubini, C. Citrini and S. Crespi-Reghizzi, Multi-push-down languages and grammars. Int. J. Found. Comput. Sci. 7 (1996) 253–292. [CrossRef] [Google Scholar]
  19. K. Morita, Universality of a reversible two-counter machine. Theor. Comput. Sci. 168 (1996) 303–320. [CrossRef] [Google Scholar]
  20. P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Counter machines and counter languages. Math. Syst. Theory 2 (1968) 265–283. [CrossRef] [Google Scholar]
  21. M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications. Springer (1993). [CrossRef] [Google Scholar]
  22. R. Laing, Realization and complexity of commutative events. Technical Report 03105-48-T, University of Michigan (1967). [Google Scholar]
  23. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts (1979). [Google Scholar]
  24. J. Hartmanis and J.E. Hopcroft, What makes some language theory problems undecidable. J. Comput. Syst. Sci. 4 (1970) 368–376. [CrossRef] [Google Scholar]
  25. G. Sénizergues, L(A) = L(B)? A simplified decidability proof. Theor. Comput. Sci. 281 (2002) 555–608. [CrossRef] [Google Scholar]
  26. R.E. Stearns, A regularity test for pushdown machines. Inform. Control 11 (1967) 323–340. [CrossRef] [Google Scholar]
  27. O. Ibarra, Reversal-bounded multicounter machines and their decision problems. J. ACM 25 (1978) 116–133. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.