Issue
RAIRO-Theor. Inf. Appl.
Volume 57, 2023
12th International Workshop on Non-Classical Models of Automata and Applications (NCMA 2022)
Article Number 9
Number of page(s) 20
DOI https://doi.org/10.1051/ita/2023010
Published online 07 November 2023
  1. R.A. Beaumont and R.P. Peterson, Set-transitive permutation groups. Can. J. Math 7 (1955) 35-42. [CrossRef] [Google Scholar]
  2. J. Brzozowski, Open problems about regular languages, edited by R.V. Book. Formal Language Theory. Academic Press (1980) 23-47. [CrossRef] [Google Scholar]
  3. J. Dassow, On the number of accepting states of finite automata. J. Autom. Lang. Comb. 21 (2016) 55-67. [MathSciNet] [Google Scholar]
  4. Y. Gao, N. Moreira, R. Reis and S. Yu, A survey on operational state complexity. J. Autom. Lang. Comb. 21 (2016) 251-310. [MathSciNet] [Google Scholar]
  5. M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley (1978). [Google Scholar]
  6. M. Holzer and C. Rauch, The range of state complexities of languages resulting from the cascade product - the unary case, edited by S. Maneth. Proceedings of the 25th International Conference on Implementation and Application of Automata. Vol. 12803 of LNCS. Bremen, Germany. Springer (2021) 90-101. [Google Scholar]
  7. M. Hospodár and M. Holzer, The ranges of accepting state complexities of languages resulting from some operations, in edited by C. Campeanu. Proceedings of the 23th Conference on Implementation and Application of Automata. Vol. 10977 of LNCS. Charlottetown, Prince Edward Island, Canada. Springer. (2018) 198-210. [Google Scholar]
  8. M. Hospodár and P. Mlynárčik, Operations on permutation automata, edited by N. Jonoska and D. Savchuk. Proceedings of the 24th International Conference on Developments in Language Theory. Vol. 12086 of LNCS. Tampa, Florida, USA. Springer (2020) 122-136. [Google Scholar]
  9. K. Iwama, Y. Kambayashi and K. Takaki, Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237 (2000) 485-494. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Jecker, N. Mazzocchi and P. Wolf, Decomposing permutation automata, edited by S. Haddad and D. Varacca. Proceedings of the 32nd International Conference on Concurrency Theory. Vol. 203 of LIPIcs. Virtual Conference. Schloss Dagstuhl-Leibniz- Zentrum für Informatik, Dagstuhl, Germany (2021) 18:1-18:19. [Google Scholar]
  11. H.P. Zeiger, Yet another proof of the cascade decomposition theorem for finite automata. Math. Syst. Theory 1 (1967) 225-228. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.