Open Access
RAIRO-Theor. Inf. Appl.
Volume 57, 2023
Article Number 1
Number of page(s) 17
Published online 18 January 2023
  1. J. Berstel, Axel Thue’s Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d’Informatique Mathematique. Universite du Quebec a Montreal (February 1995). [Google Scholar]
  2. V. Bruyere and G. Hansel, Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17–43. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Cassaigne, S. Labbe and J. Leroy, A set of sequences of complexity 2n + 1. In S. Brlek et al., editors, WORDS 2017, Vol. 10432 of Lecture Notes in Computer Science. Springer-Verlag (2017), pp. 144–156. [Google Scholar]
  4. J. Cassaigne, S. Labbe and J. Leroy, Almost everywhere balanced sequences of complexity 2n + 1. Preprint (2022). [Google Scholar]
  5. E.M. Coven and G.A. Hedlund, Sequences with minimal block growth. Math. Systems Theory 7 (1973) 138–153. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.D. Currie, P. Ochem, N. Rampersad and J. Shallit, Complement avoidance in binary words. Preprint (2022). [Google Scholar]
  7. G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Vol. 104 of Mathematical Surveys and Monographs. Amer. Math. Soc. (2003). [Google Scholar]
  8. A.S. Fraenkel, Systems of numeration. Am. Math. Monthly 92 (1985) 105–114. [CrossRef] [Google Scholar]
  9. C. Frougny and B. Solomyak, On representation of integers in linear numeration systems. In M. Pollicott and K. Schmidt, editors, Ergodic Theory of ℤd Actions (Warwick, 1993-1994), Vol. 228 of London Mathematical Society Lecture Note Series. Cambridge University Press (1996), pp. 345–368. [Google Scholar]
  10. A. Glen and J. Justin, Episturmian words: a survey. RAIRO Inform. Theor. App. 43 (2009) 403–442. [CrossRef] [EDP Sciences] [Google Scholar]
  11. J. Karhumaki, On cube-free w-words generated by binary morphisms. Disc. Appl. Math. 5 (1983) 279–297. [CrossRef] [Google Scholar]
  12. F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO Inform. Theor. App. 26 (1992) 199–204. [CrossRef] [EDP Sciences] [Google Scholar]
  13. M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62 (1940) 1–42. [CrossRef] [Google Scholar]
  14. H. Mousavi, Automatic theorem proving in Walnut. Preprint (2016). [Google Scholar]
  15. H. Mousavi, L. Schaeffer and J. Shallit, Decision algorithms for Fibonacci-automatic words, I: Basic results. RAIRO Inform. Theor. App. 50 (2016) 39–66. [CrossRef] [EDP Sciences] [Google Scholar]
  16. H. Mousavi and J. Shallit, Mechanical proofs of properties of the Tribonacci word. In F. Manea and D. Nowotka, editors, Proc. WORDS 2015, Vol. 9304 of Lecture Notes in Computer Science. Springer-Verlag (2015), pp. 1–21. [Google Scholar]
  17. G. Richomme, K. Saari and L.Q. Zamboni, Abelian complexity in minimal subshifts. J. London Math. Soc. 83 (2011) 79–95. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Shallit, Abelian complexity and synchronization. INTEGERS — Elect. J. Comb. Numb. Theory 21 (2021), #A36 (electronic). [Google Scholar]
  19. J. Shallit, Synchronized sequences. In T. Lecroq and S. Puzynina, editors, WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science. Springer-Verlag (2021), pp. 1–19. [Google Scholar]
  20. J. Shallit, The Logical Approach To Automatic Sequences: Exploring Combinatorics on Words with Walnut, Vol. 482 of London Math. Soc. Lecture Note Series. Cambridge University Press (2022). [Google Scholar]
  21. J. Shallit and A. Shur, Subword complexity and power avoidance. Theoret. Comput. Sci. 792 (2019) 96–116. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.