Open Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 56, 2022
Article Number 4
Number of page(s) 11
DOI https://doi.org/10.1051/ita/2022004
Published online 21 February 2022
  1. G. Castiglione, G. Fici and A. Restivo, Primitive sets of words. Theoret. Comput. Sci. 866 (2021) 25–36. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Choffrut and J. Karhumaki, Combinatorics of words, in Vol. 1 of Handbook of Formal Languages. Springer-Verlag, Berlin, Heidelberg (1997) 329–438. [CrossRef] [Google Scholar]
  3. C. Chunhua, Y. Shuang and D. Yang, Some kinds of primitive and non-primitive words. Acta Inform. 51 (2014) 339–346. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Dömösi, S. Horväth and M. Ito, Formal languages and primitive words. Publ. Math. Debrecen 42 (1993) 315–321. [MathSciNet] [Google Scholar]
  5. P. Dömösi and G. Horváth, Alternative proof of the Lyndon-Schützenberger theorem. Theoret. Comput. Sci. 366 (2006) 194–198. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Dömösi and G. Horvath, The language of primitive words is not regular: two simple proofs. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 87 (2005) 191–197. [Google Scholar]
  7. P. Dömösi, G. Horváth and L. Vuillon, On the Shyr-Yu theorem. Theo. Comput. Sci. 410 (2009) 4874–4877. [CrossRef] [Google Scholar]
  8. P. Dömös and M. Ito, Context-free languages and primitive words. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). [Google Scholar]
  9. P. Dömösi, M. Ito and S. Marcus, Marcus contextual languages consisting of primitive words. Discrete Math. 308 (2008) 4877–4881. [CrossRef] [MathSciNet] [Google Scholar]
  10. O. Echi, Non-primitive words of the form pqm. RAIRO-Theor. Inf. Appl. 51 (2017) 135–139. [Google Scholar]
  11. N.J. Fineand H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16 (1965) 109–114. [CrossRef] [Google Scholar]
  12. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 6th edn. Oxford University Press, Oxford (2008). [Google Scholar]
  13. S. Horváth, Strong interchangeability and nonlinearity of primitive words, in: Algebraic Methods in Language Processing. Univ. of Twente, Enschede, The Netherlands (1995) 173–178. [Google Scholar]
  14. A. Lentin and M.P. Schützenberger, A combinatorial problem in the theory of free monoids. In: Combinatorial Mathematics and its Applications. Proc. Conf., Univ. North Carolina, Chapel Hill, N.C. (1967) 128–144. [Google Scholar]
  15. M. Lothaire, Combinatorics on Words. Addison-Wesley (1983). [Google Scholar]
  16. R.C. Lyndon and M.P. Schützenberger, The equation aM = bNcP in a free group. Mich. Math. J. 9 (1962) 289–298. [CrossRef] [Google Scholar]
  17. A. Restivo, On a question of McNaughton and Papert. Inf. Control 25 (1974) 93–101. [CrossRef] [Google Scholar]
  18. C. Reis and H.J. Shyr, Some properties of disjunctive languages on a free monoid. Inf. Control 37 (1978) 334–344. [Google Scholar]
  19. R. Sińya, Asymptotic Approximation by Regular Languages. In: theory and practice of computer science, SOFSEM 2021, LNCS vol 12607 (2021) 74–88. [Google Scholar]
  20. H.J. Shyr and S.S. Yu, Non-primitive words in the language p+q+. Soochow J. Math. 20 (1994) 535–546. [MathSciNet] [Google Scholar]
  21. H.J. Shyr, Free monoids and languages. 2nd edition. Lecture notes, Hon Min Book Co., Taichung (1991). [Google Scholar]
  22. H.J. Shyr and F.K. Tu, Local distribution of non-primitive words. In: Ordered structures and algebra of computer languages. World Scientific, River Edge, NJ (1993) 202–217. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.