Issue
RAIRO-Theor. Inf. Appl.
Volume 55, 2021
11th Workshop on Non-classical Models of Automata and Applications (NCMA 2019)
Article Number 6
Number of page(s) 19
DOI https://doi.org/10.1051/ita/2021006
Published online 22 July 2021
  1. R. Alur and P. Madhusudan, Visibly pushdown languages, in Symposium on Theory of Computing (STOC 2004). ACM (2004) 202–211. [Google Scholar]
  2. R. Alur and P. Madhusudan, Adding nesting structure to words. J. ACM 56 (2009). [Google Scholar]
  3. S. Bensch, M. Holzer, M. Kutrib and A. Malcher. Input-driven stack automata. In Theoretical Computer Science (TCS 2012), volume 7604 of LNCS. Springer (2012) 28–42. [Google Scholar]
  4. D. Carotenuto, A. Murano and A. Peron, Ordered multi-stack visibly pushdown automata. Theoret. Comput. Sci. 656 (2016) 1–26. [Google Scholar]
  5. P. Chervet and I. Walukiewicz, Minimizing variants of visibly pushdown automata. In Mathematical Foundations of Computer Science (MFCS 2007), volume 4708 of LNCS. Springer (2007) 135–146. [Google Scholar]
  6. S. Crespi-Reghizzi and D. Mandrioli, Operator precedence and the visibly pushdown property. J. Comput. System Sci. 78 (2012) 1837–1867. [Google Scholar]
  7. P.W. Dymond, Input-driven languages are in log n depth. Inform. Process. Lett. 26 (1988) 247–250. [Google Scholar]
  8. J. Goldstine, J.K. Price and D. Wotschke, On reducing the number of states in a PDA. Math. Syst. Theory 15 (1982) 315–321. [Google Scholar]
  9. J. Goldstine, J.K. Price and D. Wotschke, On reducing the number of stack symbols in a PDA. Math. Syst. Theory 26 (1993) 313–326. [Google Scholar]
  10. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979). [Google Scholar]
  11. M. Kutrib and A. Malcher, Digging input-driven pushdown automata. In Eleventh Workshop on Non-Classical Models of Automata and Applications, NCMA 2019, Valencia, Spain, July 2-3, 2019. Österreichische Computer Gesellschaft (2019) 109–124. [Google Scholar]
  12. M. Kutrib, A. Malcher, C. Mereghetti, B. Palano and M. Wendlandt, Deterministic input-driven queue automata: finite turns, decidability, and closure properties. Theoret. Comput. Sci. 578 (2015) 58–71. [Google Scholar]
  13. M. Kutrib, A. Malcher and M. Wendlandt, Tinput-driven pushdown, counter, and stack automata. Fund. Inf . 155 (2017) 59–88. [Google Scholar]
  14. S. La Torre, P. Madhusudan and G. Parlato, A robust class of context-sensitive languages. In Logic in Computer Science (LICS 2007). IEEE Computer Society (2007) 161–170. [Google Scholar]
  15. S. La Torre, M. Napoli and G. Parlato, On multi-stack visibly pushdown languages. Preprint (2013). http://eprints.soton.ac.uk/id/eprint/351914. [Google Scholar]
  16. S. La Torre, M. Napoli and G. Parlato, Scope-bounded pushdown languages. Int. J. Found. Comput. Sci. 27 (2016) 215–234. [Google Scholar]
  17. M. Lange, P-hardness of the emptiness problem for visibly pushdown languages. Inform. Process. Lett. 111 (2011) 338–341. [Google Scholar]
  18. P. Madhusudan and G. Parlato, The tree width of auxiliary storage. In Principles of Programming Languages, (POPL 2011). ACM (2011) 283–294. [Google Scholar]
  19. A. Meduna and P. Zemek, Jumping finite automata. Int. J. Found. Comput. Sci. 23 (2012) 1555–1578. [Google Scholar]
  20. K. Mehlhorn, Pebbling moutain ranges and its application of DCFL-recognition. In International Colloquium on Automata, Languages and Programming (ICALP 1980). Volume 85 of LNCS. Springer (1980) 422–435. [Google Scholar]
  21. B. Nagyand F. Otto, Finite-state acceptors with translucent letters. In International Workshop on AI Methods for Interdisciplinary Research in Language and Biology (ICAART 2011). INSTICC, SciTePress (2011) 3–13. [Google Scholar]
  22. A. Okhotin and K. Salomaa, Complexity of input-driven pushdown automata. SIGACT News 45 (2014) 47–67. [Google Scholar]
  23. A. Salomaa, Formal Languages. Academic Press (1973). [Google Scholar]
  24. B. von Braunmühl and R. Verbeek, Input-driven languages are recognized in log n space. In Topics in the Theory of Computation. Volume 102 of Mathematics Studies. North-Holland, Amsterdam (1985) 1–19. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.