Free Access
RAIRO-Theor. Inf. Appl.
Volume 31, Number 3, 1997
Page(s) 205 - 236
Published online 01 February 2017
  1. 1. A. AIKEN et E. WIMMERS, Solving Systems of Set Constraints, In 7th Symposium on LICS, 1992. [Zbl: 0834.68105] [Google Scholar]
  2. 2. A. AIKEN, D. KOZEN et E. WIMMERS, Decidability of Systems of Set Constraints with Negative Constraints, Technical Report 93-1362, Computer Science Departement, Cornell University, June 1993. [Zbl: 0834.68105] [Google Scholar]
  3. 3. F. AMBERT, B. LEGEARD et E. LEGROS, Constraint Logic Programming on Sets and Multisets, Workshop on Constraint Languages and their usein Problem modelling, in conjunction with ILPS'94, Ithaca, USA, pp. 151-165, November 18, 1994. [Google Scholar]
  4. 4. C. BEERI, S. NAQVI, R. RAMAKRISHNAN, O. SHMUELI, S. TSUR, Sets and negation in a logic database language (LDL1), Proceedings of the 6th Annual ACM SIGMOD Symposium on principles of Database Systems, 1987, 16, N3, pp.21-37. [Google Scholar]
  5. 5. F. M. BROWN, Towards the Automation of Set Theory and its Logic, Artificial Intelligence, 1978, 10, pp.281-316. [MR: 514045] [Zbl: 0395.68082] [Google Scholar]
  6. 6. D. CANTONE, A. FERRO et E. OMODEO, Computable Set Theory, Academic Press 1990. [Zbl: 0755.03024] [Google Scholar]
  7. 7. A. COLMERAUER, An Introduction to PROLOG III, In Communication of the A.C.M., July 1990, 33, No. 7. [Zbl: 0679.68045] [Google Scholar]
  8. 8. D. CANTONE, E. OMODEO et A. POLICRITI, The Automation of Syllogistic II. Optimization and Complexity Issues, Journal of Automated Reasoning, 1990, 6, pp. 173-187. [MR: 1066797] [Zbl: 0744.03015] [Google Scholar]
  9. 9. M. DINCBAS, P. VAN HENTERYCK, H. SIMONIS, A. AGGOUN, T. GRAF et F. BERTHIER, The Constraint Logic Programming Language CHIP, Proceeding of the International Conference on Fifth generation Computer System (Tokyo88). [Google Scholar]
  10. 10. A. DOVIER, E. OMODEO, E. PONTELLI et G. F. ROSSI, log: A Logic Programming Language With Finite Sets, Proceedings of The Eighth International Conference in Logic Programming (K.Furukawa, ed), The MIT Press, 1991, p. 111-124. [Zbl: 0874.68056] [Google Scholar]
  11. 11. A. FERRO, E. OMODEO et J. T. SCHWARTZ, Decision Procedures for Elementary Sublanguages of Set Theory. I: Multi-level syllogistic andsome Extensions, Comm. Pure and Appl. Math., 1980, XXXIII, pp. 599-608. [MR: 586413] [Zbl: 0453.03009] [Google Scholar]
  12. 12. R. GILLERON, S. TISON et M. TOMMASI, Solving Systems of Set Constraints using Tree Automata, In Proc. STACS, LNCS 665, Février 1993, Springer-Verlag, p. 505-514. [MR: 1249313] [Zbl: 0797.68115] [Google Scholar]
  13. 13. N. HEINTZ et J. JAFFAR, A Decision Procedure fora Class of Set Constraints, LICS 90. [Google Scholar]
  14. 14. M. HIBTI, NP-Complétude du langage MLS, Mémoire de DEA de Mathématiques, Université de Franche-Comté, Septembre 1991. [Google Scholar]
  15. 15. M. HIBTI, Satisfiabilité dans certains langages ensemblistes, Actes de la journée ensemble, rapport de recherche LIFO Orléans, 9 avril 1992. [Google Scholar]
  16. 16. M. HIBTI, Décidabilité et Complexité de systèmes de contraintes ensemblistes, Thèse de Doctorat de Mathématiques, Université de Franche-Comté, N d'ordre 464, juin 1995. [Google Scholar]
  17. 17. M. HIBTI, H. LOMBARDI et B. LEGEARD, Deciding in HFS-Theory via Linear Integer Programming with Application to Set-Unification, in Proc. of the 4th International Conference on Logic Programming and Automated Reasoning LPAR 93, St Petersbourg, pp. 170-181, Springer LNCS 698. [MR: 1251075] [Zbl: 0790.90052] [Google Scholar]
  18. 18. M. HIBTI, B. LEGEARD et H. LOMBARDI, Decision Procedure for Constraintsover Sets Multisets and Sequences, Research report LAB-RRIAP 9402. [Zbl: 0889.68062] [Google Scholar]
  19. 19. J. JAFFAR et J. L. LASSEZ, Constraint Logic Programming, Proceedings of the 14th ACM Conference on Principle of Programming Languages, POPL, Munich, 1987, pp. 111-119. [Google Scholar]
  20. 20. J. JAFFAR et M. K. MAHER, Constraint Logic Programming: A Survey, J. of Logic Programming, May/July, 1994, 19/20, pp. 503-582. [Zbl: 0900.68127] [MR: 1279934] [Google Scholar]
  21. 21. D. KAPUR et P. NARENDRAN, NP-Completeness of the Set Unification and Matching Problems, Proc. of the ICAD, Oxford, July 1986, Springer LNCS 230, 489-495. [MR: 876524] [Zbl: 0643.68054] [Google Scholar]
  22. 22. G. M. KUPER, Logic Programming with Sets, Research Report IBM Yorktown Heights, RC 12378, Dec. 1987. [Google Scholar]
  23. 23. B. LEGEARD, H. LOMBARDI, E. LEGROS et M. HIBTI, A Satisfaction Approach to Set Unification, in Proceedings of the 13th International Conference on Artificial Intelligence, Expert Systems and Natural Language, EC2, Avignon, 1993, 1, pp. 265-276. [Google Scholar]
  24. 24. A. K. MACKWORTH, "Consistency in Network of Relations", Journal of Artificial Intelligence, 1977, 8, n° 1, pp.99-118. [Zbl: 0341.68061] [Google Scholar]
  25. 25. B. A. NADEL, Constraints Satisfaction Algorithms, Journal of Computer Intelligence, 1989, 5, pp. 188-224. [Google Scholar]
  26. 26. A. POLICRITI, NP-completeness of MLS, technical report, University of Udine, 1990. [Google Scholar]
  27. 27. F. PARLAMENTO et A. POLICRITI, Decision Procedures for Elementary Sub-languages of Set Theory. XIII: Model Graph, Reflexion and Decidability, Journal of Automated Reasoning, 1991, 7. [MR: 1118329] [Zbl: 0734.03006] [Google Scholar]
  28. 28. F. PARLAMENTO et A. POLICRITI, Undecidability Results for Restricted Universallu Quantified Formulae of Set Theory, Com. on Pure and Applied Mathematics, 1993, XLVI, pp. 57-73. [MR: 1193343] [Zbl: 0797.03005] [Google Scholar]
  29. 29. D. PASTRE, Automatic Theorem Proving in Set Theory, Artificial Intelligence, 1978, 10, pp. 1-27. [MR: 496431] [Zbl: 0374.68059] [Google Scholar]
  30. 30. K. J. PERRY, K. V. PALEM, K. MCALOON et G. M. KUPER, The Complexity of Logic Programming with Sets, Research Report IBM Yorktown Heights, RC 12887, 1987. [Zbl: 0784.68042] [Google Scholar]
  31. 31. J. H. SIEKMANN, Unification Theory, in Unification, Edited by C. Kirchner, Academic Press, 1990, pp. 1-68. [Zbl: 0704.68096] [MR: 1090370] [Google Scholar]
  32. 32. R. SIGAL, Desiderata for Logic Programming with Sets, GULP Proceedings of the 4th National Conference on Logic Programming, 1989, pp. 127-141, Bologna. [Google Scholar]
  33. 33. Y. SATO, K. SAKAI et S. MENJU, SetCAL- a Solver of Set Constraints in CAL System, Technical Report TM-0963, ICOT, 1990. [Google Scholar]
  34. 34. J. T. SCHWARTS, R. B. DEWAR, E. DUBINSKY et E. SCHONBERG, Programming with Sets - An Introduction to SETL, 493 pages, Springer-Verlag Editions, Berlin, 1986. [Zbl: 0604.68001] [Google Scholar]
  35. 35. E. TSANG, Foundations of Constraint Satisfaction, Academic Press, 1993. [Google Scholar]
  36. 36. P. VAN HENTENRYCK, Constraint Satisfaction in Logic Programming, The MIT Press, 224 pages, 1989. [MR: 1013366] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.