Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 30, Number 2, 1996
Page(s) 155 - 179
DOI https://doi.org/10.1051/ita/1996300201551
Published online 01 February 2017
  1. 1. L. DLEMAN and K. MANDERS, Reducibility, randomness, and intractability, Proc. 9th ACM Symp. on Theory of Computing, 1977, pp. 151-163. [Google Scholar]
  2. 2. E. ALLENDER, L. HEMACHANDRA, M. OGIWARA and O. WATANABE, Relating equivalence and reducibility to sparse sets, SIAM Journal on Computing 1992, 21 (3), pp. 529-539. [MR: 1163344] [Zbl: 0761.68039] [Google Scholar]
  3. 3. V. ARVIND Y. HAN, L. A. HEMACHANDRA, J. KOBLER, A. LOZANO, M. MUNDHENK, M. OGIWARA, U. SCHONING, R. SILVESTRI and T. THIERAUF, Reductions to sets of low information content, In Complexity Theory, Current Research, Cambridge University Press, 1993, pp. 1-45. [MR: 1255339] [Zbl: 0794.68058] [Google Scholar]
  4. 4. V. ARVIND, J. KOBLER and M. MUNDHENK, On bounded truth-table, conjunctive, and randomized reductions to sparse sets, Proc. 12th Conf. FST & TCS, Lecture Notes in Computer Science, 52, pp. 140-151, Springer Verlag, 1992. [MR: 1229096] [Zbl: 0919.03034] [Google Scholar]
  5. 5. V. ARVIND, J. KOBLER and M. MUNDHENK, Upper bounds on the complexity of sparse and tally descriptions, Mathematical Systems Theory, to appear. [MR: 1360197] [Zbl: 0840.68041] [Google Scholar]
  6. 6. J. BALCÁZAR, Self-reducibility, Journal of Computer and System Sciences, 1990, 41, pp. 367-388. [MR: 1079471] [Zbl: 0718.68037] [Google Scholar]
  7. 7. J. L. BALCÁZAR, J. DÍAZ and J. GABARRÓ, Structural Complexity I, II. EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1988. [MR: 1047862] [Zbl: 0638.68040] [Google Scholar]
  8. 8. P. BERMAN, Relationship between density and deterministic complexity of NP-complete languages. Proceedings of the 5th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, 62, pp. 63-71, Springer Verlag, 1978. [MR: 520839] [Zbl: 0382.68068] [Google Scholar]
  9. 9. L. BERMAN and J. HARTMANIS, On isomorphisms and density of NP and other complete sets, SIAM Journal on Computing, 1977, 6 (2), pp. 305-322. [MR: 455536] [Zbl: 0356.68059] [Google Scholar]
  10. 10. R. BOOK and K. KO, On sets truth-table reducible to sparse sets, SIAM Journal on Computing, 1988, 17 (5), pp. 903-919. [MR: 961047] [Zbl: 0665.68040] [Google Scholar]
  11. 11. H. BUHRMAN, L. LONGPRÉ and E. SPAAN, Sparse reduces conjunctively to tally, Proceedings of the 8th Structure in Complexity Theory Conference, IEEE Computer Society Press, 1993. [Zbl: 0830.68042] [MR: 1310802] [Google Scholar]
  12. 12. R. CHANG, J. KADIN and P. ROHATGI, Connections between the complexity of unique satisfiability and the threshold behavior of randomized reductions, Proceedings of the 6th Structure in Complexity Theory Conference, pp. 255-269, IEEE Computer Society Press, 1991. [Zbl: 0837.68026] [Google Scholar]
  13. 13. S. EVEN, A. SELMAN and Y. YACOBI, The complexity of promise problems with applications to public-key cryptography, Information and Control, 1984, 61, pp. 114-133. [MR: 772678] [Zbl: 0592.94012] [Google Scholar]
  14. 14. S. FORTUNE, A note on sparse complete sets, SIAM Journal on Computing, 1979, 8 (3), pp. 431-433. [MR: 539260] [Zbl: 0415.68006] [Google Scholar]
  15. 15. R. GAVALDÀ and O. WATANABE, On the computational complexity of small descritpions, In Proceedings of the 6th Structure in Complexity Theory Conference, pp. 89-101. IEEE Computer Society Press, 1991, The final version is to appear in SIAM Journal on Computing. [Zbl: 0799.68085] [Google Scholar]
  16. 16. J. GILL, Computational complexity of probabilistic complexity classes, SIAM Journal on Computing, 1977, 6, pp. 675-695. [MR: 464691] [Zbl: 0366.02024] [Google Scholar]
  17. 17. S. HOMER and L. LONGPRÉ, On reductions of NP sets to sparse sets, Proc. 6th Structure in Complexity Theory Conference, pp. 79-88. IEEE Computer Society Press, 1991. [Zbl: 0806.68046] [Google Scholar]
  18. 18. L. HEMACHANDRA, M. OGIWARA and O. WATANABE, How hard are sparse sets? Proc. 7th Structure in Complexity Theory Conference, IEEE Computer Society Press, 1992. [Zbl: 0761.68039] [MR: 1249979] [Google Scholar]
  19. 19. N. IMMERMAN and S. MAHANEY, Relativizing relativized computations, Theoretical Computer Science, 1989, 68, pp. 267-276. [MR: 1031961] [Zbl: 0679.68084] [Google Scholar]
  20. 20. B. JENNER and J. TORÁN, Computing functions with parallel queries to NP, Proceedings of the 8th Structure in Complexity Theory Conference, pp. 280-291, IEEE Computer Society Press; May 1993. [Zbl: 0873.68058] [MR: 1310807] [Google Scholar]
  21. 21. J. KADIN, PNP[log n] and sparse Turing-complete sets for NP, Journal of Computer and System Sciences, 1989, 39 (3) pp. 282-298. [MR: 1030658] [Zbl: 0693.68027] [Google Scholar]
  22. 22. R. KARP and R. LIPTON, Some connections between nonuniform and uniform complexity classes, Proceedings of the 12th ACM Symposium on Theory of Computing, 1980, pp. 302-309. [Google Scholar]
  23. 23. K. KO, Some observations on the probabilistic algorithms and NP-hard problems, Information Processing Letters, 1982, 14, pp. 39-43. [MR: 654074] [Zbl: 0483.68045] [Google Scholar]
  24. 24. K. KO, On self-reducibility and weak p-selectivity, Journal of Computer and system Sciences, 1983, 26, pp. 209-221. [MR: 708837] [Zbl: 0519.68062] [Google Scholar]
  25. 25. K. KO, Distinguishing conjunctive and disjunctive reducibilities by sparse sets, Information and Computation, 1989, 81 (1) pp. 62-87. [MR: 992304] [Zbl: 0681.68066] [Google Scholar]
  26. 26. J. KÖBLER, U. SCHÖNING, S. TODA and J. TORÁN, Turing machines with few accepting computations and low sets for PP, Journal of Computer and System Sciences, 1992, 44 (2), pp. 272-286. [MR: 1160464] [Zbl: 0757.68056] [Google Scholar]
  27. 27. R. LADNER, N. LYNCH and A. SELMAN, A comparison of polynomial time reducibilities, Theoretical Computer Science, 1975, 1 (2), pp. 103-124. [MR: 395319] [Zbl: 0321.68039] [Google Scholar]
  28. 28. S. MAHANEY, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis, Journal of Computer and System Sciences, 1982, 25 (2), pp. 130-143. [MR: 680515] [Zbl: 0493.68043] [Google Scholar]
  29. 29. M. MUNDHENK, Hausdorff-Reduktionen zu Mengen mit geringem Informationsgehalt, PhD dissertation, Universität Ulm, 1993. [Google Scholar]
  30. 30. M. OGIWARA and A. LOZANO, On one query self-reducible sets, Theoretical Computer Science, 1993, 112, pp. 255-276. [Zbl: 0780.68043] [MR: 1216322] [Google Scholar]
  31. 31. M. OGIWARA and O. WATANABE, On polynomial-time bounded truth-table reducibility of NP sets to sparse sets, SIAM Journal on Computing, 1991, 20(3), pp. 471-483. [MR: 1094526] [Zbl: 0741.68049] [Google Scholar]
  32. 32. D. RANJAN and P. ROHATGI, Randomized reductions to sparse sets, Proceedings of the 7th Structure in Complexity Theory Conference, IEEE Computer Society Press, 1992, pp. 239-242. [MR: 1249980] [Google Scholar]
  33. 33. S. SALUJA, Relativized limitations of the left set technique and closure classes of sparse sets, Proceedings of the 8th Structure in Complexity Theory Conference, pp. 215-222. IEEE Computer Society Press, 1993. [Google Scholar]
  34. 34. U. SCHONING, On random reductions from sparse sets to tally sets, Information Processing Letters, 1993, 46, pp. 239-241. [Zbl: 0780.68044] [Google Scholar]
  35. 35. A. L. SELMAN, Reductions on NP and p-selective sets, Theoretical Computer Science, 1982, 19, pp. 287-304. [MR: 671872] [Zbl: 0489.03016] [Google Scholar]
  36. 36. S. TANG and R. BOOK, Reducibilities on tally and sparse sets, Theoretical Informatics and Applications, 1991, 25, pp. 293-302. [EuDML: 92394] [MR: 1119046] [Zbl: 0731.68039] [Google Scholar]
  37. 37. S. TODA, On polynomial time truth-table reducibilities of intractable sets to P-selective sets, Mathematical Systems Theory, 1991, 24 (2), pp. 69-82. [MR: 1096692] [Zbl: 0722.68059] [Google Scholar]
  38. 38. E. UKKONEN, TWO results on polynomial time truth-table reductions to sparse sets, SIAM Journal on Computing, 1983, 12 (3), pp. 580-587. [MR: 707414] [Zbl: 0532.68051] [Google Scholar]
  39. 39. L. G. VALIANT and V. V. VAZIRANI, NP is as easy as detecting unique solutions, Theoretical Computer Science, 1986 47, pp. 85-93. [MR: 871466] [Zbl: 0621.68030] [Google Scholar]
  40. 40. K. W. WAGNER, More complicated questions about maxima and minima, and some closures of NP, Theoretical Computer Science, 1987, 57, pp. 53-80. [MR: 908480] [Zbl: 0653.03027] [Google Scholar]
  41. 41. C. YAP, Some consequences of non-uniform conditions on uniform classes, Theoretical Computer Science, 1983, 26, pp. 287-300. [MR: 726923] [Zbl: 0541.68017] [Google Scholar]
  42. 42. Y. YESHA, On certain polynomial-time truth-table reducibilities of complete sets to sparse sets, SIAM Journal on Computing, 1983, 12 (3), pp. 411-425. [MR: 707404] [Zbl: 0545.03023] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.