Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 3, 1995
Page(s) 171 - 191
DOI https://doi.org/10.1051/ita/1995290301711
Published online 01 February 2017
  1. [CAM91]. H. CAMERON, Extremal Cost Binary Trees, PhD thesis, University of Waterloo, 1991. [Google Scholar]
  2. [CW94]. H. CAMERON and D. WOOD, Maximal path length of binary trees, Discrete Applied Mathematics, 1994, 55 (1), pp. 15-35. [MR: 1298512] [Zbl: 0821.68094] [Google Scholar]
  3. [DP94]. R. DE PRISCO, G. PARLATI and G. PERSIANO, On the path length of trees with known fringe, Unpublished manuscript, 1994. [Zbl: 0875.68705] [Google Scholar]
  4. [DP94]. A. DE SANTIS and G. PERSIANO, Tight upper and lower bounds on the path length of binary trees, SIAM Journal on Computing, 1994, 23 (1), pp. 12-23. [MR: 1258991] [Zbl: 0802.68034] [Google Scholar]
  5. [Knu73]. D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973. [MR: 445948] [Google Scholar]
  6. [KW89]. R. KLEIN and D. WOOD, On the path length of binary trees, Journal of the ACM, 1989, 36 (2), pp. 280-289. [MR: 1072422] [Zbl: 0674.68012] [Google Scholar]
  7. [NW73]. J. NIEVERGELT and CHAK-KUEN WONG, Upper bounds for the total path length of binary trees, Journal of the ACM, January 1973, 20 (1), pp. 1-6. [MR: 495300] [Zbl: 0263.68022] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.