Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 29, Number 1, 1995
Page(s) 75 - 83
DOI https://doi.org/10.1051/ita/1995290100751
Published online 01 February 2017
  1. 1. A. BORODIN, A. RAZBOROV, R. SMOLENSKY, On lower bounds for read-k times branching programs, Computational Complexity, 1993, 3, pp. 1-18. [MR: 1220075] [Zbl: 0777.68043] [Google Scholar]
  2. 2. R. C. BOSE, D. K. RAY-CHAUDHURI, On a class of error-correcting binary group codes, Information and Control, 1960, 3, 1, pp. 68-79. [MR: 112768] [Zbl: 0104.36402] [Google Scholar]
  3. 3. N. IMMERMAN, Nondeterministic space is closed under complementation, SIAM J. Comput, 1988, 77, pp. 935-938. [MR: 961049] [Zbl: 0668.68056] [Google Scholar]
  4. 4. S. JUKNA, The effect of null-chains on the complexity of contact circuits, Springer Lecture Notes in Computer Science, 1989, 380, pp. 246-256. [MR: 1033553] [Zbl: 0728.94012] [Google Scholar]
  5. 5. M. KRAUSE, Ch. MEINEL, S. WAACK, Separating the eraser Turing machine classes Le, NLe, co - NLe and Pe, Theor. Comp. Sci., 1991, 86, pp. 267-275. [MR: 1122791] [Zbl: 0749.68036] [Google Scholar]
  6. 6. S. E. KUZNETSOV, The influence of null-chains on the complexity of contact circuits, Probabilistic Methods in Cybernetics, 1984, 20, in Russian. [Google Scholar]
  7. 7. E. A. OKOLNISHNIKOVA, Lower bounds on the complexity of realization of characteristic functions of binary codes by branching programs, Diskretnii Analiz, 1991, Novosibirsk, 57, pp. 61-83, in Russian. [MR: 1177381] [Zbl: 0819.94031] [Google Scholar]
  8. 8. A. A. RAZBOROV, Lower bounds for deterministic and nondeterministic branching programs, Springer Lecture Notes in Computer Science, 1991, 529, pp. 47-60. [MR: 1136069] [Google Scholar]
  9. 9. R. SZELEPCÉNYI, The method of forcing for nondeterministic automata, Bull. European Assoc. Theoret. Comput. Sci., 1987, 33, pp. 96-100. [Zbl: 0664.68082] [Google Scholar]
  10. 10. I. WEGENER, On the complexity of branching programs and décision trees for clique functions, Internal Rept. 5/84, FB Inforrnatik, Univ. of Frankfurt, 1984 [see also: Journal of the ACM, 1988, 35, pp. 461-471]. [MR: 935261] [Zbl: 0652.68063] [Google Scholar]
  11. 11. S. ŽAK, An exponential lower bound for one-time-only branching programs, Springer Lecture Notes in Computer Science, 1984, 176, pp. 562-566. [MR: 783488] [Zbl: 0558.68044] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.