Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 28, Number 3-4, 1994
Special issue for Professor Karel Culik II : 60 th birthday
Page(s) 405 - 423
DOI https://doi.org/10.1051/ita/1994283-404051
Published online 03 February 2017
  1. 1. M. F. BARNSLEY, Fractals Everywhere, Academic Press, 1988. [MR: 1231795] [Zbl: 0691.58001] [Google Scholar]
  2. 2. J. L. BENTLEY, D. HAKEN and J. B. SAXE, A General Method for Solving Divide-and-Conquer Recurrences, SIGACT News, 1980, 12, pp. 36-44. [Zbl: 0451.68038] [Google Scholar]
  3. 3. L. BLUM, M. SHUB and S. SMALE, On a Theory of Computation and Complexity over the Real Numbers: NP Completeness, recursive functions and universal machines, Bulletin of American Mathematical Society, 1989, 21, pp. 1-46. [MR: 974426] [Zbl: 0681.03020] [Google Scholar]
  4. 4. T. H. CORMEN, C. E. LEISERSON and R. L. RIVEST, Introduction to Algorithms, MIT Press, 1990. [MR: 1066870] [Zbl: 1158.68538] [Google Scholar]
  5. 5. K. CULIK II and S. DUBE, Affine Automata and Related Techniques for Generation of Complex Images, Theoretical Computer Science, 1993, 116, pp. 373-398. [MR: 1231951] [Zbl: 0779.68062] [Google Scholar]
  6. 6. K. CULIK II and S. DUBE, Encoding Images as Words and Languages, International Journal of Algebra and Computation, 1993, 3, No. 2, pp. 211-236. [MR: 1233222] [Zbl: 0777.68056] [Google Scholar]
  7. 7. S. DUBE, Undecidable Problems in Fractal Geometry, Technical Report 93-71, Dept. of Math. and Comp. Sci., University of New England at Armidale, Australia. [Zbl: 0816.58024] [MR: 1307741] [Google Scholar]
  8. 8. S. DUBE, Using Fractal Geometry for Solving Divide-and-Conquer Recurrences, to appear in Journal of Aust. Math. Soc., Applied Math., Preliminary version in Proc. of ISAAC'93, Hong Kong. Lecture Notes in Computer Science, Springer-Verlag, 762, pp. 191-200. [MR: 1359178] [Zbl: 0852.68101] [Google Scholar]
  9. 9. K. J. FALCONER, Digital Sun Dials, Paradoxical Sets and Vitushkin's Conjecture, Math Intelligencer, 1987, 9, pp. 24-27. [Zbl: 0609.28005] [Google Scholar]
  10. 10. J. GLEICK, Chaos-Making a New Science, Penguin Books, 1988. [MR: 1010647] [Zbl: 0706.58002] [Google Scholar]
  11. 11. J. E. HOPCROFT and J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979. [MR: 645539] [Zbl: 0426.68001] [Google Scholar]
  12. 12. J. HUTCHINSON, Fractals and Self-similarity, Indiana University Journal of Mathematics, 1981, 30, pp. 713-747. [MR: 625600] [Zbl: 0598.28011] [Google Scholar]
  13. 13. B. MANDELBROT, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1982. [MR: 665254] [Zbl: 0504.28001] [Google Scholar]
  14. 14. R. PENROSE, The Emperor's New Mind, Oxford University Press, Oxford, 1990. [Zbl: 0795.00009] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.