Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 28, Number 2, 1994
Page(s) 125 - 149
DOI https://doi.org/10.1051/ita/1994280201251
Published online 01 February 2017
  1. 1. S. B. AKERS, Binary Decision Diagrams, IEEE Trans. on Computers, 1978, vol. C-27. [Zbl: 0377.94038] [Google Scholar]
  2. 2. T. C. BARTEE, I. L. LEBOW, I. S. REED, Theory and Design of Digital Machines, McGraw-Hill, 1962. [MR: 154452] [Zbl: 0114.06504] [Google Scholar]
  3. 3. J.-P. BILLON, Perfect Normal Forms for Discrete Functions, BULL Research Report n° 87019, juin 1987. [Google Scholar]
  4. 4. N. N. BISWAS, Introduction to Logic and Switching Theory, Gordon & Breach Science, 1975. [Zbl: 0314.94021] [Google Scholar]
  5. 5. R. E. BRAYTON, G. D. HACHTEL, C. T. MCMULLEN, A. L. SANGIOVANNI-VINCENTELLI, Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984. [Zbl: 0565.94020] [Google Scholar]
  6. 6. F. M. BROWN, Boolean Reasoning, Kluwer Academic Publishers, 1990. [MR: 1166188] [Zbl: 0719.03002] [Google Scholar]
  7. 7. R. E. BRYANT, Graph-Based Algorithms for Boolean Functions Manipulation, IEEE Trans. on Computers, 1986, vol. C35. [Zbl: 0593.94022] [Google Scholar]
  8. 8. R. E. BRYANT, On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication, Carnegie Mellon University Research Report, September 1988. [Google Scholar]
  9. 9. K. M. BUTLER, D. E. ROSS, R. KAPUR, M. R. MERCER, Heuristics to Compute Variable Orderings for Efficient Manipulations of Ordered Binary Decision Diagrams, in Proc. of 28th Design Automation Conference, San Francisco, California, June 1991, 417-420. [Google Scholar]
  10. 10. O. COUDERT, J. C. MADRE, A Unified Framework for the Formal Verification of Sequential Circuits, Proc. of ICCAD '90, novembre 1990, Santa Clara CA, U.S.A. [Zbl: 0747.68072] [Google Scholar]
  11. 11. O. COUDERT, S.I.A.M.: Une boîte à outils pour la preuve formelle de systèmes séquentiels, Thèse de troisième cycle, École Nationale Supérieure des Télécommunications, Paris, France, octobre 1991. [Google Scholar]
  12. 12. O. COUDERT, J. C. MADRE, A New Method to Compute Prime and Essential Prime Implicants of Boolean Functions, Proc. of Brown/MIT Conference on Advanced Research in VLSI and Parallel Systems, mars 1992, Cambridge MA, U.S.A. [Google Scholar]
  13. 13. O. COUDERT, J. C. MADRE, Implicit and Incremental Computation of Primes and Essential Primes of Boolean Functions, Proc. of 29th DAC, juin 1992, Anaheim CA, U.S.A. [Google Scholar]
  14. 14. O. COUDERT, J. C. MADRE, A New Implicit DAG Based Prime and Essential Prime Computation Technique, Proc. of International Symposium on Information Sciences, juillet 1992, Fukuoka, Japon. [Google Scholar]
  15. 15. M. DAVIS, H. PUTNAM, A Computing Procedure for Quantification Theory, Journal of the ACM, 1960, vol. 7, 201-215. [MR: 134439] [Zbl: 0212.34203] [Google Scholar]
  16. 16. S. J. FRIEDMAN, K. J. SUPOWIT, Finding the Optimal Variable Ordering for Binary Decision Diagrams, IEEE Trans. on Computer, 1990, vol. C-39, 710-713. [MR: 1059769] [Google Scholar]
  17. 17. D. F. HASL, Advanced Concepts in Fault Tree Analysis, Proc. of System Safety Symposium, juin 1965, Seatle. [Google Scholar]
  18. 18. S. J. HONG, S. MUROGA, Absolute Minimization of Completely Specified Switching Functions, IEEE Trans. on Computers, 1991, vol. 40, 53-65. [MR: 1093496] [Google Scholar]
  19. 19. H. R. HWA, A Method for Generating Prime Implicants of a Boolean Expression, IEEE Trans. on Computers, 1974, 637-641. [MR: 441563] [Zbl: 0281.94025] [Google Scholar]
  20. 20. H. Y. HWANG, D. S. CHAO, M. E. VALDEZ, A New Technique for the Minimization of Switching Functions, IEEE Southeastcon'85, 1985, 299-304. [Google Scholar]
  21. 21. J. DE KLEER, An Assumption-Based TMS, Artificial Intelligence, 1986, vol. 28, 127-162. [Google Scholar]
  22. 22. J. DE KLEER, B. C. WILLIAMS, Diagnosing Multiple Faults, Artificial Intelligence, 1987, vol. 32, 97-130. [Zbl: 0642.94045] [Google Scholar]
  23. 23. M. C. LOUI, G. BILARDI, The Correctness of Tison's Method for Generating Prime Implicants, Report R-952, UILU-ENG 82-2218, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1982. [Google Scholar]
  24. 24. E. L. Jr. MCCLUSKEY, Minimization of Boolean Functions, Bell System Techniques, 1959, vol. 35, 1417-1444. [MR: 82876] [Google Scholar]
  25. 25. J. C. MADRE, J. P. BILLON, Proving Circuit Correctness Using Formal Comparison Between Expected and Extracted Behaviour, Proc. of the 25th DAC, juillet 1988, Anaheim CA, U.S.A. [Google Scholar]
  26. 26. J. C. MADRE, O. COUDERT, A Logically Complete Reasoning Maintenance System Based on Logical Constrain Solver, Proc. of IJCAI'91, août 1991, Sydney, Australia. [Zbl: 0747.68072] [Google Scholar]
  27. 27. S. MALIK, A. R. WANG, R. K. BRAYTON, A. SANGIOVANNI-VINCENTELLI, Logic Verification using Binary Decision Diagrams in a Logic Synthesis Environment, Proc. of ICCAD'88, Santa Clara, 1988, U.S.A. [Google Scholar]
  28. 28. S. MINATO, N. ISHIURA, S. YAJIMA, Shared Binary Decision Diagrams with Attributed Edges for Efficient Boolean Function Manipulation, Proc. of the 27 th Design Automation Conference, June 1990, Las Vegas, Nevada, 52-57. [Google Scholar]
  29. 29. A. PAGÈS, M. GONDRAN, Fiabilité des systèmes, Eyrolles, 1980. [MR: 596408] [Zbl: 0491.90029] [Google Scholar]
  30. 30. W. V. O. QUINE, The Problem of Simplifying Truth Functions, American Mathematics Monthly, 1952, vol. 59, 521-531. [MR: 51191] [Zbl: 0048.24503] [Google Scholar]
  31. 31. W. V. O. QUINE, A Way to Simplify Truth Functions, American Mathematics. Monthly, 1955, vol. 62, 627-631. [MR: 75886] [Zbl: 0068.24209] [Google Scholar]
  32. 32. W.V. O. QUINE, On Cores and Prime Implicants of Truth Functions, American Mathematics Monthly, 1959, vol. 66. [MR: 108439] [Zbl: 0201.32203] [Google Scholar]
  33. 33. R. REITER, A Theory of Diagnosis From First Principles, Artificial Intelligence, 1987, vol.32. [MR: 884192] [Zbl: 0643.68122] [Google Scholar]
  34. 34. R. REITER, J. de KLEER, Foundation of Assumption-Based Truth Maintenance Systems: Preliminary Report, Proc. of 6th AAAI, 1987, 183-188. [Google Scholar]
  35. 35. V. T. RHYNE, P. S. NOE, M. H. MCKINNEY, U. W. POOCH, A New Technique for the Fast Minimization of Switching Functions, IEEE Trans, on Computers, 1977, vol. C-26/8, 757-764. [MR: 530246] [Zbl: 0365.94048] [Google Scholar]
  36. 36. J. A. ROBINSON, A Machine-Oriented Logic Based on the Resolution Principle, Journal of ACM, 1965, vol. 12, 23-41. [MR: 170494] [Zbl: 0139.12303] [Google Scholar]
  37. 37. J. P. ROTH, Algebraic Topological Methods for the Synthesis of Switching Systems, Trans. of American Mathematical Society, 1958, vol. 88/2, 301-326. [MR: 97285] [Zbl: 0083.13103] [Google Scholar]
  38. 38. R. L. RUDELL, A. L. SANGIOVANNI-VINCENTELLI, Multiple Valued Minimization for PLA Optimization, IEEE Trans. on CAD, 1987, vol 6, 727-750. [Google Scholar]
  39. 39. T. SASAO, An Application of Multiple-Valued Logic to a Design of Programmable Logic Arrays, Proc. of 8th Int'l Symposium on Multiple Valued Logic, 1978. [MR: 565416] [Google Scholar]
  40. 40. J. R. SLAGE, C. L. CHANG, R. C. T. LEE, Completeness Theorems for Semantics Resolution in Consequence Finding, Proc. of IJCAI'69, 1969, 281-285. [Google Scholar]
  41. 41. J. R. SLAGE, C. L. CHANG, R. C. T. LEE, A New Algorithm for Generating Prime Implicants, IEEE Trans, on Computers, 1970, vol. C-19(4), 304-310. [MR: 456994] [Zbl: 0197.14601] [Google Scholar]
  42. 42. M. STONE, The Theory of Representations for Boolean Algebra, Trans. Amer. Math. Soc., 1936, vol. 40, 37-111. [Zbl: 0014.34002] [MR: 1501865] [JFM: 62.0033.04] [Google Scholar]
  43. 43. P. TISON, Generalized Consensus Theory and Application to the Minimization of Boolean Functions, IEEE Trans, on Electronic Computers, 1967, vol. EC-16/4, 446-456. [Zbl: 0158.16102] [Google Scholar]
  44. 44. A. VILLEMEUR, Sûreté de fonctionnement des systèmes industriels, Eyroles, 1988. [Google Scholar]
  45. 45. S. YANG, Logic Synthesis and Optimization Benchmarks User Guide, Microelectronics Center of North Carolina, January 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.