Free Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 27, Number 6, 1993
|
|
---|---|---|
Page(s) | 483 - 501 | |
DOI | https://doi.org/10.1051/ita/1993270604831 | |
Published online | 01 February 2017 |
- 1. M. ABADI and G. D. PLOTKIN, A Logical view of composition and refinement, Theoretical Computer Science, 1993, 114, pp. 3-30. [MR: 1224510] [Zbl: 0778.68061] [Google Scholar]
- 2. S. ABRAMSKY and S. VICKERS, Quantales, observational logic and process semantics, Imperial College Research Report DOC 90/1, January 1990. [Zbl: 0823.06011] [Google Scholar]
- 3. V. M. ABRUSCI, Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, J. of Symbolic Logic, 1991, 56, No. 4. [MR: 1136467] [Zbl: 0746.03044] [Google Scholar]
- 4. G. AMIOT, Sémantique des phases de la logique linéaire du second ordre, Prépublication n° 21 de l'Equipe de Logique Mathématique, Université Paris-VII, février 1991. [Google Scholar]
- 5. A. AVRON, The semantics and proff theory of Linear Logic, Theoretical Computer Science, 1988, 57. [MR: 960102] [Zbl: 0652.03018] [Google Scholar]
- 6. M. BARR, *-Autonomous Categories, L.N.M. 752, Springer, 1979. [MR: 550878] [Zbl: 0415.18008] [Google Scholar]
- 7. J. VAN BENTHEM, Logic in action, North Holland, 1991. [Zbl: 0717.03001] [MR: 1102016] [Google Scholar]
- 8. U. BERNI-CANANI, F. BORCEUX, R. SUCCI-CRUCIANI and G. VAN DEN BOSSCHE, Etale maps of quantales, Bull. Soc. Math. Belgique, 1989, XLI, (2). [MR: 1031749] [Zbl: 0687.06005] [Google Scholar]
- 9. G. BIRKOFF, Lattice Theory, A.M.S. Colloq. Publications, 1967, 25. [Zbl: 0153.02501] [Google Scholar]
- 10. C. BROWN, Petri nets as Quantales, Technical Report ECS LFCS 89-96, University of Edinburgh, 1989. [Google Scholar]
- 11. M. DAM, Relevance logic and concurrent computation, in Proc. 3th L.I.C.S. I.E.E.E., 1978. [Google Scholar]
- 12. DAY, Category Seminar, Sydney 1972/3, L.N.M. 420, Springer Verlag. [Google Scholar]
- 13. J. M. DUNN, Gaggle theory: an abstraction of Galois connections and residuation, with applications to negation, implication, and various logical operators, L.N.A.I, 478, Springer Verlag, 1990. [MR: 1099620] [Zbl: 0814.03044] [Google Scholar]
- 14. U. ENGBERG and G. WINSKEL, Petri Nets as Models of Linear Logic, L.N.C.S. 431, 1991. [MR: 1075028] [Zbl: 0757.03005] [Google Scholar]
- 15. P. J. FREYD and A. SCEDROV, Categories, Allegories, North Holland, 1990. [MR: 1071176] [Zbl: 0698.18002] [Google Scholar]
- 16. J. GALLIER, Equality in Linear Logic, Draft paper, 1991. [Google Scholar]
- 17. J. Y. GIRARD, Linear Logic, Theoretical Computer Science, 1987, 50, pp. 1-102. [MR: 899269] [Zbl: 0625.03037] [Google Scholar]
- 18. M. C. B. HENNESSY and G. D. PLOTKIN, Full abstraction for a simple parallel programming language, in Proc. M.F.C.S. 79, L.N.C.S. 74, Springer Verlag, 1979. [MR: 570978] [Zbl: 0457.68006] [Google Scholar]
- 19. W. H. HESSELINK, Axioms and Models of Linear Logic, Formal Aspects of Computing, 1990, 2, pp. 139-166. [Zbl: 0703.03010] [Google Scholar]
- 20. C. A. R. HOARE and HE JIFENG, The weakest prespecification, Information Processing Letters, 1987, 24. [MR: 882642] [Zbl: 0622.68025] [Google Scholar]
- 21. P. T. JOHNSTONE, Stone spaces, Cambridge University Press, 1982. [MR: 698074] [Zbl: 0499.54001] [Google Scholar]
- 22. A. JOYAL and M. TIERNEY, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs No. 309, 1984. [MR: 756176] [Zbl: 0541.18002] [Google Scholar]
- 23. J. LAMBEK, Categorial and categorical grammars, in Categorial Grammars and Natural Language Structures, R. T. OEHRLE et al. (D. Reidel 1988) Ed., pp. 297-317. [Google Scholar]
- 24. J. LAMBEK, From categorical grammar to bilinear logic, in Substructural logics, K. DOZEN and P. SCHROEDER-HEISTER Eds. (to appear). [MR: 1283198] [Zbl: 0941.03518] [Google Scholar]
- 25. J. LILIUS, High-level Nets and Linear Logic, L.N.C.S. 616, Springer Verlag, 1992. [MR: 1253098] [Google Scholar]
- 26. S. MIKULAS, The completeness of the Lambek calculus with respect to relational semantics, Institute for Language, Logic and Information, Prepublication 92-03. [Google Scholar]
- 27. S. NIEFFIELD and K. ROSENTHAL, Constructing Locales from a Quantale, Mathematical Proc. of the Cambridge Philosophical Soc., 1988, 104. [Zbl: 0658.06007] [Google Scholar]
- 28. E. ORLOWSKA, Algebraic aspects of the relational knowledge representation modal relation algebras, L.N.C.S. 619, Springer, 1992. [MR: 1231572] [Google Scholar]
- 29. W. PRATT, Origins of the Calculus of Binary Relations, L.I.C.S., 1992. [Google Scholar]
- 30. F. PUCCI, C*-Algebre, Logiche e Computazione, Tesi di Laurea in Mathematica, Università di Roma La Sapienza, A.A. 1989-1990. [Google Scholar]
- 31. K. I. ROSENTHAL, Quantales and their applications, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1990. [MR: 1088258] [Zbl: 0703.06007] [Google Scholar]
- 32. K. I. ROSENTHAL, Free quantaloids, J. of Pure and Applied Algebra, 1991, 72. [MR: 1115568] [Zbl: 0729.18007] [Google Scholar]
- 33. K. I. ROSENTHAL, Girard quantaloids, Mathematical Structures in Computer Science, 1992, 2. [MR: 1159501] [Zbl: 0761.18008] [Google Scholar]
- 34. B. STENSTROM, Rings of Quotients, Springer Verlag, 1975. [MR: 389953] [Zbl: 0296.16001] [Google Scholar]
- 35. S. VICKERS, Topology via Logic, Cambridge University Press, Cambridge, 1989. [MR: 1002193] [Zbl: 0668.54001] [Google Scholar]
- 36. M. WARD and R. P. DILWORTH, Residuated Lattices, Trans. A.M.S., 1939, 45. [Zbl: 0021.10801] [JFM: 65.0084.01] [Google Scholar]
- 37. D. N. YETTER, Quantales and non commutative linear logic, J. of Symbolic Logic, 1990, 55. [Zbl: 0701.03026] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.