Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 5, 1992
Page(s) 449 - 482
DOI https://doi.org/10.1051/ita/1992260504491
Published online 01 February 2017
  1. 1. H. J. BANDELT, M. POUZET, The MacNeille Completion of the Collection of Words Over an Ordered Alphabet, manuscrit, 1990. [Google Scholar]
  2. 2. P. M. COHN, Universal Algebra, M.I.A., 6, Reidel, Dordrecht, 1981. [MR: 620952] [Zbl: 0461.08001] [Google Scholar]
  3. 3. R. FRAÏSSÉ, Cours de Logique Mathématique, 1, Relation et formule logique, Gauthier-Villars, Paris, 1971, trd. anglaise Reidel, Dordrecht, 1973. [MR: 446871] [Zbl: 0247.02001] [Google Scholar]
  4. 4. R. FRAÏSSÉ, Cours de Logique Mathématique, 2, Théorie des modèles, Gauthier-Villars, Paris, 1971, trd. anglaise Reidel, Dordrecht, 1973. [MR: 446871] [Google Scholar]
  5. 5. R. FRAÏSSÉ, Theory of Relations. Studies in Logic, 118, North-Holland, Amsterdam, 1986. [MR: 832435] [Zbl: 0593.04001] [Google Scholar]
  6. 6. G. HIGMAN, Ordering by Divisibility in Abstract Algebra, Proc. London Math. Soc., 2, 1952, p. 326-336. [MR: 49867] [Zbl: 0047.03402] [Google Scholar]
  7. 7. E. JAWHARI, D. MISANE et M. POUZET, Retracts: Graphs and Ordered Sets from the Metric Point of View, in Combinatorics and Ordered Sets, I. RIVAL éd., Contemp. Math., 57, A.M.S., 1986, p. 175-226. [MR: 856237] [Zbl: 0597.54028] [Google Scholar]
  8. 8. J. TECH, Set Theory, Academic Press, New York, 1978. [MR: 506523] [Zbl: 0419.03028] [Google Scholar]
  9. 9. P. JULLIEN, Sur un théorème d'extension dans la théorie des mots, C.R. Acad. Sci. Paris, 266, série A, 1968, p. 851-854. [MR: 245450] [Zbl: 0157.03104] [Google Scholar]
  10. 10. P. JULLIEN, Contribution à l'étude des types d'ordres dispersés, Thèse de doctorat, Marseille, 1969. [Google Scholar]
  11. 11. J. B. KRUSKAL, Well-Quasi-Ordering, the Tree Theorem and Vazsonyi's Conjecture, Trans. Amer. Math. Soc., 95, 1960, p. 210-225. [MR: 111704] [Zbl: 0158.27002] [Google Scholar]
  12. 12. M. LOTHAIRE, Combinatories on words, Encyclopedia Math. Appl., 17, Addison-Wesley, 1983. [MR: 675953] [Zbl: 0514.20045] [Google Scholar]
  13. 13. E. C. MILNER et M. POUZET, On the Cofinality of Partially Ordered Sets, in Ordered sets, I. RIVAL éd., Reidel ASI, 83, 1982, p. 279-297. [MR: 661297] [Zbl: 0489.06001] [Google Scholar]
  14. 14. E. C. MILNER, Basic wqo-and bqo-Theory, in Graphs and Order, I. RIVAL éd., Reidel ASI, 147, 1985, p. 487-502. [MR: 818505] [Zbl: 0573.06002] [Google Scholar]
  15. 15. C. St. J. A. NASH-WILLIAMS, On Well-Quasi-Ordering Finite Trees, Proc Cambridge Philos. Soc., 59, 1963, p. 833-835. [MR: 153601] [Zbl: 0122.25001] [Google Scholar]
  16. 16. B. POIZAT, Cours de théorie des modèles, Nur-al-mantiqwal-ma'rifah, Villeurbanne, 1985. [MR: 817208] [Zbl: 0583.03001] [Google Scholar]
  17. 17. A. QUILLIOT, An Application of the Helly Property to the Partially Ordered Sets, J. Combin. Theory. Ser. A, 35, 1983, p. 185-198. [MR: 712104] [Zbl: 0515.06005] [Google Scholar]
  18. 18. F. SAÏDANE, Graphes et langages : une approche métrique, Thèse de diplôme de doctorat, Lyon, novembre 1991, n° 206-91. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.