Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 3, 1992
Page(s) 257 - 286
DOI https://doi.org/10.1051/ita/1992260302571
Published online 01 February 2017
  1. 1. S. ARNBORG, D. CORNEIL and A. PROSKUROWSKI, Complexity of finding an embedding in a k-tree, S.I.A.M. J. Alg. Disc. Methods, 1987, 8, pp. 277-284. [MR: 881187] [Zbl: 0611.05022]
  2. 2. S. ARNBORG, B. COURCELLE, A. PROSKUROWSKI and D. SEESE, An algebraic theory of graph reduction, Report 90-02, Bordeaux-I University, 1990. Short version in L.N.C.S., 532, 1991, pp. 70-83. [MR: 1431274] [Zbl: 0765.68062]
  3. 3. S. ARNBORG, J. LAGERGREN et D. SEESE, Easy problems for tree decomposable graphs, J. Algorithms, 1991, 12, pp. 308-340. [MR: 1105479] [Zbl: 0734.68073]
  4. 4. S. ARNBORG and A. PROSKUROWSKI, Characterization and recognition of partial 3-trees, S.I.A.M. J. Alg. Disc. Meth., 1986, 7, pp. 305-314. [MR: 830649] [Zbl: 0597.05027]
  5. 5. S. ARNBORG A. PROSKUROWSKI and D. CORNEIL, Forbidden minors characterization of partial 3-trees, Discrete Math., 1990, 80, pp. 1-19. [MR: 1045920] [Zbl: 0701.05016]
  6. 6. M. BAUDERON, Infinite hypergraphs, I, Basic proporties, Theoret. Comput. Sci., 1991, 82, pp. 177-214. [MR: 1112768] [Zbl: 0758.05069]
  7. 7. M. BAUDERON and B. COURCELLE, Graph expressions and graph rewritings, Math. System Theory, 1987, 29, pp. 83-127. [MR: 920770] [Zbl: 0641.68115]
  8. 8. H. BODLAENDER, Classes of graphs wïth bounded tree-width, Report RUU-CS-86-22, University of Utrecht, The Netherlands, 1986.
  9. 9. H. BODLAENDER, Polynomial algorithms for Chromatic Index and Graph Isomorphism on partial k-trees, Proc. First Scandinavian Workshop on Algorithm theory, 1988, Lecture Notes in Comput. Sci., 318, pp. 223-232. [MR: 1019374] [Zbl: 0651.68079]
  10. 10. H. BODLAENDER, Dynamic programming on graphs with bounded tree width, Proceedings of ICALP'88, Tampere, Finland, L.N.C.S, 317, 1988, pp. 105-118. [MR: 1023630] [Zbl: 0649.68039]
  11. 11. H. BODLAENDER, Improved self-reduction algorithms for graphs with bounded tree-width, Proceedings of WG'89, Lecture Notes in Comput. Sci., 1990, 411, pp. 232-244. [MR: 1063946] [Zbl: 0768.68033]
  12. 12. B. COURCELLE, An axiomatic definition of eontext-free rewriting and its application to NLC graph grammars, Theoret. Comput. Sci., 1987, 55, pp. 141-181. [MR: 932445] [Zbl: 0644.68095]
  13. 13. B. COURCELLE, The monadic second-order theory of graphs I: Recognizable sets of finite graphs. Inform. and Comput. 1990, 85, pp. 12-75. [MR: 1042649] [Zbl: 0722.03008]
  14. 14. B. COURCELLE, The monadic second-order logie of graphs II: Infinite graphs of bounded with, Math. Systems Theory, 1989, 21, pp. 187-221. [MR: 987150] [Zbl: 0694.68043]
  15. 15. B. COURCELLE, The monadic second-order logic of graphs IV, Definability results for equational graphs, Ann. Pure Appl. Logic, 1990, 49, pp. 193-255. [MR: 1077259] [Zbl: 0731.03006]
  16. 16. B. COURCELLE, The monadic second-order logic of graphs VI: On several representations of graphs by logical structures, Research report 89-99, Bordeaux I-University. Discrete Appl. Math. (in press). (See also Logic in Comput. Sci., 1990. Philadelphia). [Zbl: 0809.03005]
  17. 17. B. COURCELLE, Graph rewriting: an algebraic and logic approach, in Handbook of Theoretical computer Science, vol. B, J. VAN LEEUWEN Ed. 1990, Elsevier, pp. 193-242. [Zbl: 0900.68282]
  18. 18. B. COURCELLE and M. MOSBAH, Monadic second-order evaluations on tree-decomposable graphs, Rapport 90-110, Bordeaux-I, University, 1990. Theor. Comput. Sci., (to appear). [Zbl: 0789.68083]
  19. 19. M. FELLOWS and M. LANGSTON, On Search, decision and the efficiency of polynomial-time algorithms, A.C.M. Symp. on Theory of Computing 1989, pp. 501-512.
  20. 20. M. FELLOWS and M. LANGSTON, An analogue of the Myhill-Nerode Theorem and its use in computing finite-basis characterization, 30th Annual I.E.E.E. Symp. on Foundations of Computer Science, 1989, pp. 520-525.
  21. 21. A. HABEL, Hyperedge replacement: grammars and languages, Doctoral dissertation, University of Bremen 1989.
  22. 22. A. HABEL and H. J. KREOWSKI, May we introduce to you: hyperedge replacement, L.N.C.S., 1987, 291, pp. 15-26. [Zbl: 0643.68106]
  23. 23. C. LAUTEMANN, Efficient algorithms on context-free graph languages, ICALP'88, Tampere, Finland, L.N.C.S., 1987, 317, pp. 362-378. [Zbl: 0649.68075]
  24. 24. J. LEUNG, J. WITTHOF and O. VORNBERGER, On some variations on the bandwidth minization problem, S.I.A.M. J. Comput., 1984, 13, pp. 650-667. [Zbl: 0545.68058]
  25. 25. N. ROBERTSON and P. SEYMOUR, Some new results on the well-quasi-ordering of graphs, Ann. Discrete Math., 1984, 23, pp. 343-354. [Zbl: 0556.05058]
  26. 26. N. ROBERTSON and P. SEYMOUR, Graph Minors IV, Tree-width and well quasiordering, J. Combin. Theory, Ser. B. 48, 1990, pp. 227-254. [MR: 1046757] [Zbl: 0719.05032]
  27. 27. N. ROBERTSON and P. SEYMOUR, Graph Minors V, excluding a planar graph, J. Combin. Theory, Ser. B., 1986, 41, pp. 92-114. [MR: 854606] [Zbl: 0598.05055]
  28. 28. N. ROBERTSON and P. SEYMOUR, Graph Minors X, Obstructions to tree-decomposition, Revised version, Feb. 1988.
  29. 29. N. ROBERTSON and P. SEYMOUR, Graph Minors XIII, The disjoint paths problem, Preprint, September 1986. [Zbl: 0823.05038] [MR: 1309358]
  30. 30. N. ROBERTSON and P. SEYMOUR, Graph Minors XV, Wagner's conjecture, Revised version, March 1988.
  31. 31. D. SEESE, Ein Unentscheidbarkeitskreiterium, Wiss. Z. der Humbold Univ. Zu Berlin Math. Natur. Wiss., R24, 1975, pp. 772-780. [Zbl: 0331.02026]
  32. 32. D. SEESE, The structure of the models of decidable monadic theories of graphs. Ann. Pure and Appl. Logic, 1991, 53, pp. 169-195. [MR: 1114848] [Zbl: 0733.03026]
  33. 33. J. VAN LEEUWEN, Graph algorithms, Handbook of Theoretical Computer Science, volume A", J. VAN LEEUWEN Ed., 1990, Elsevier, pp. 523-631. [MR: 1127176] [Zbl: 0900.68258]
  34. 34. W. VOGLER, Recognizing edge replacement graphs languages in cubic time, Proceedings of the 4th Int. Workshop on Graph Grammars, Bremen 1990, L.N.C.S., 532, 1991, pp. 676-687. [MR: 1431296] [Zbl: 0769.68078]
  35. 35. K. WAGNER, Ueber eine Eigenshaft der ebenen Komplexe, Math. Ann., 1937, 114, pp. 570-590. [EuDML: 159935] [MR: 1513158] [Zbl: 0017.19005]
  36. 36. J. WALD and C. COLBOURN, Steiner trees, partial 2-trees, and IFI networks, Networks, 1983,13, pp. 159-167. [MR: 706489] [Zbl: 0529.68036]
  37. 37. J. LAGERGREN and S. ARNBORG, Finding minimal forbiden minors using a finite congruence, L.N.C.S. 510, 1991, pp. 532-543. [MR: 1129933] [Zbl: 0764.68122]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.