Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 26, Number 3, 1992
Page(s) 257 - 286
DOI https://doi.org/10.1051/ita/1992260302571
Published online 01 February 2017
  1. 1. S. ARNBORG, D. CORNEIL and A. PROSKUROWSKI, Complexity of finding an embedding in a k-tree, S.I.A.M. J. Alg. Disc. Methods, 1987, 8, pp. 277-284. [MR: 881187] [Zbl: 0611.05022] [Google Scholar]
  2. 2. S. ARNBORG, B. COURCELLE, A. PROSKUROWSKI and D. SEESE, An algebraic theory of graph reduction, Report 90-02, Bordeaux-I University, 1990. Short version in L.N.C.S., 532, 1991, pp. 70-83. [MR: 1431274] [Zbl: 0765.68062] [Google Scholar]
  3. 3. S. ARNBORG, J. LAGERGREN et D. SEESE, Easy problems for tree decomposable graphs, J. Algorithms, 1991, 12, pp. 308-340. [MR: 1105479] [Zbl: 0734.68073] [Google Scholar]
  4. 4. S. ARNBORG and A. PROSKUROWSKI, Characterization and recognition of partial 3-trees, S.I.A.M. J. Alg. Disc. Meth., 1986, 7, pp. 305-314. [MR: 830649] [Zbl: 0597.05027] [Google Scholar]
  5. 5. S. ARNBORG A. PROSKUROWSKI and D. CORNEIL, Forbidden minors characterization of partial 3-trees, Discrete Math., 1990, 80, pp. 1-19. [MR: 1045920] [Zbl: 0701.05016] [Google Scholar]
  6. 6. M. BAUDERON, Infinite hypergraphs, I, Basic proporties, Theoret. Comput. Sci., 1991, 82, pp. 177-214. [MR: 1112768] [Zbl: 0758.05069] [Google Scholar]
  7. 7. M. BAUDERON and B. COURCELLE, Graph expressions and graph rewritings, Math. System Theory, 1987, 29, pp. 83-127. [MR: 920770] [Zbl: 0641.68115] [Google Scholar]
  8. 8. H. BODLAENDER, Classes of graphs wïth bounded tree-width, Report RUU-CS-86-22, University of Utrecht, The Netherlands, 1986. [Google Scholar]
  9. 9. H. BODLAENDER, Polynomial algorithms for Chromatic Index and Graph Isomorphism on partial k-trees, Proc. First Scandinavian Workshop on Algorithm theory, 1988, Lecture Notes in Comput. Sci., 318, pp. 223-232. [MR: 1019374] [Zbl: 0651.68079] [Google Scholar]
  10. 10. H. BODLAENDER, Dynamic programming on graphs with bounded tree width, Proceedings of ICALP'88, Tampere, Finland, L.N.C.S, 317, 1988, pp. 105-118. [MR: 1023630] [Zbl: 0649.68039] [Google Scholar]
  11. 11. H. BODLAENDER, Improved self-reduction algorithms for graphs with bounded tree-width, Proceedings of WG'89, Lecture Notes in Comput. Sci., 1990, 411, pp. 232-244. [MR: 1063946] [Zbl: 0768.68033] [Google Scholar]
  12. 12. B. COURCELLE, An axiomatic definition of eontext-free rewriting and its application to NLC graph grammars, Theoret. Comput. Sci., 1987, 55, pp. 141-181. [MR: 932445] [Zbl: 0644.68095] [Google Scholar]
  13. 13. B. COURCELLE, The monadic second-order theory of graphs I: Recognizable sets of finite graphs. Inform. and Comput. 1990, 85, pp. 12-75. [MR: 1042649] [Zbl: 0722.03008] [Google Scholar]
  14. 14. B. COURCELLE, The monadic second-order logie of graphs II: Infinite graphs of bounded with, Math. Systems Theory, 1989, 21, pp. 187-221. [MR: 987150] [Zbl: 0694.68043] [Google Scholar]
  15. 15. B. COURCELLE, The monadic second-order logic of graphs IV, Definability results for equational graphs, Ann. Pure Appl. Logic, 1990, 49, pp. 193-255. [MR: 1077259] [Zbl: 0731.03006] [Google Scholar]
  16. 16. B. COURCELLE, The monadic second-order logic of graphs VI: On several representations of graphs by logical structures, Research report 89-99, Bordeaux I-University. Discrete Appl. Math. (in press). (See also Logic in Comput. Sci., 1990. Philadelphia). [Zbl: 0809.03005] [Google Scholar]
  17. 17. B. COURCELLE, Graph rewriting: an algebraic and logic approach, in Handbook of Theoretical computer Science, vol. B, J. VAN LEEUWEN Ed. 1990, Elsevier, pp. 193-242. [Zbl: 0900.68282] [Google Scholar]
  18. 18. B. COURCELLE and M. MOSBAH, Monadic second-order evaluations on tree-decomposable graphs, Rapport 90-110, Bordeaux-I, University, 1990. Theor. Comput. Sci., (to appear). [Zbl: 0789.68083] [Google Scholar]
  19. 19. M. FELLOWS and M. LANGSTON, On Search, decision and the efficiency of polynomial-time algorithms, A.C.M. Symp. on Theory of Computing 1989, pp. 501-512. [Google Scholar]
  20. 20. M. FELLOWS and M. LANGSTON, An analogue of the Myhill-Nerode Theorem and its use in computing finite-basis characterization, 30th Annual I.E.E.E. Symp. on Foundations of Computer Science, 1989, pp. 520-525. [Google Scholar]
  21. 21. A. HABEL, Hyperedge replacement: grammars and languages, Doctoral dissertation, University of Bremen 1989. [Google Scholar]
  22. 22. A. HABEL and H. J. KREOWSKI, May we introduce to you: hyperedge replacement, L.N.C.S., 1987, 291, pp. 15-26. [Zbl: 0643.68106] [Google Scholar]
  23. 23. C. LAUTEMANN, Efficient algorithms on context-free graph languages, ICALP'88, Tampere, Finland, L.N.C.S., 1987, 317, pp. 362-378. [Zbl: 0649.68075] [Google Scholar]
  24. 24. J. LEUNG, J. WITTHOF and O. VORNBERGER, On some variations on the bandwidth minization problem, S.I.A.M. J. Comput., 1984, 13, pp. 650-667. [Zbl: 0545.68058] [Google Scholar]
  25. 25. N. ROBERTSON and P. SEYMOUR, Some new results on the well-quasi-ordering of graphs, Ann. Discrete Math., 1984, 23, pp. 343-354. [Zbl: 0556.05058] [Google Scholar]
  26. 26. N. ROBERTSON and P. SEYMOUR, Graph Minors IV, Tree-width and well quasiordering, J. Combin. Theory, Ser. B. 48, 1990, pp. 227-254. [MR: 1046757] [Zbl: 0719.05032] [Google Scholar]
  27. 27. N. ROBERTSON and P. SEYMOUR, Graph Minors V, excluding a planar graph, J. Combin. Theory, Ser. B., 1986, 41, pp. 92-114. [MR: 854606] [Zbl: 0598.05055] [Google Scholar]
  28. 28. N. ROBERTSON and P. SEYMOUR, Graph Minors X, Obstructions to tree-decomposition, Revised version, Feb. 1988. [Google Scholar]
  29. 29. N. ROBERTSON and P. SEYMOUR, Graph Minors XIII, The disjoint paths problem, Preprint, September 1986. [Zbl: 0823.05038] [MR: 1309358] [Google Scholar]
  30. 30. N. ROBERTSON and P. SEYMOUR, Graph Minors XV, Wagner's conjecture, Revised version, March 1988. [Google Scholar]
  31. 31. D. SEESE, Ein Unentscheidbarkeitskreiterium, Wiss. Z. der Humbold Univ. Zu Berlin Math. Natur. Wiss., R24, 1975, pp. 772-780. [Zbl: 0331.02026] [Google Scholar]
  32. 32. D. SEESE, The structure of the models of decidable monadic theories of graphs. Ann. Pure and Appl. Logic, 1991, 53, pp. 169-195. [MR: 1114848] [Zbl: 0733.03026] [Google Scholar]
  33. 33. J. VAN LEEUWEN, Graph algorithms, Handbook of Theoretical Computer Science, volume A", J. VAN LEEUWEN Ed., 1990, Elsevier, pp. 523-631. [MR: 1127176] [Zbl: 0900.68258] [Google Scholar]
  34. 34. W. VOGLER, Recognizing edge replacement graphs languages in cubic time, Proceedings of the 4th Int. Workshop on Graph Grammars, Bremen 1990, L.N.C.S., 532, 1991, pp. 676-687. [MR: 1431296] [Zbl: 0769.68078] [Google Scholar]
  35. 35. K. WAGNER, Ueber eine Eigenshaft der ebenen Komplexe, Math. Ann., 1937, 114, pp. 570-590. [EuDML: 159935] [MR: 1513158] [Zbl: 0017.19005] [Google Scholar]
  36. 36. J. WALD and C. COLBOURN, Steiner trees, partial 2-trees, and IFI networks, Networks, 1983,13, pp. 159-167. [MR: 706489] [Zbl: 0529.68036] [Google Scholar]
  37. 37. J. LAGERGREN and S. ARNBORG, Finding minimal forbiden minors using a finite congruence, L.N.C.S. 510, 1991, pp. 532-543. [MR: 1129933] [Zbl: 0764.68122] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.