Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 25, Number 1, 1991
Page(s) 85 - 100
DOI https://doi.org/10.1051/ita/1991250100851
Published online 01 February 2017
  1. 1. S. CAMBANIS, G. SIMON and W. STOUT, Inequalities for Ek (X, Y) when the Marginals are Fixed, Zeitschrift für Wahrscheinlichkeistheorie und verwandte Gebiete, 1976, 36, pp. 285-294. [MR: 420778] [Zbl: 0325.60002] [Google Scholar]
  2. 2. M. DENKER and U. RÖSLER, A Moment Estimate for Rank Statistics, Journal of Statistical Planning and Interference, 1985, 12, pp. 269-284. [MR: 818380] [Zbl: 0591.62033] [Google Scholar]
  3. 3. L. DEVROYE, Exponential Bounds for the Running Time of a Selection Algorithm, Journal of Computer and System Sciences, 1985, 29, pp. 1-7. [MR: 761047] [Zbl: 0555.68018] [Google Scholar]
  4. 4. N. DUNFORD and J. SCHWARTZ, Linear Operators I, John Wiley & Sorts, 1963. [Zbl: 0128.34803] [Google Scholar]
  5. 5. W. D. FRAZER and A. C. MCKELLAR, Samplesort: A Sampling Approach to Minimal Storage Tree Sorting, Journal of the Association for Computing Machinery, 1970, 17, pp. 496-507. [MR: 287744] [Zbl: 0205.19202] [Google Scholar]
  6. 6. P. HENNEQUIN, Combinatorial Analysis of Quicksort Algorithm, Informatique théorique et Applications/Theoretical Informatics and Applications, 1989, 23, pp. 317-333. [EuDML: 92337] [MR: 1020477] [Zbl: 0685.68058] [Google Scholar]
  7. 7. C. A. R. HOARE, Algorithm 64: Quicksort, Communications of the Association for Computing Machinery, 1961, 4, p. 321. [Google Scholar]
  8. 8. C. A. R. HOARE, Quicksort, Computer Journal, 1962, 5, pp. 10-15. [MR: 142216] [Zbl: 0108.13601] [Google Scholar]
  9. 9. D. E. KNUTH, The art of computer programming, 3, Sorting and searching, M. A. Reading, Addison-Wesley, 1973. [Zbl: 0302.68010] [MR: 378456] [Google Scholar]
  10. 10. R. LOESER, Some Performance Tests of "Quicksort" and Descendants, Communications of the Association for Computing Machinery 1974, 17, pp. 143-152. [Google Scholar]
  11. 11. P. MAJOR, On the invariance principle for sums of independent identically distributed random variables, Journal of Multivariate Analysis, 1978, 8, pp. 487-517. [MR: 520959] [Zbl: 0408.60028] [Google Scholar]
  12. 12. M. RÉGNIER, A Limit Distribution for Quicksort, Informatique théorique et Applications/Theoretical Informatics and Applications, 1989, 23, pp. 335-343. [EuDML: 92338] [MR: 1020478] [Zbl: 0677.68072] [Google Scholar]
  13. 13. R. SEDGEWICK, The analysis of Quicksort programs, Acta Informatica, 1977, 7, pp. 327-355. [MR: 451845] [Zbl: 0325.68016] [Google Scholar]
  14. 14. R. SEDGEWICK, Quicksort, Stanford Computer Science Report STAN-CS-75-492, Ph. d. thesis, 1975, Also published by Garland, Pub. Co., New York, 1980. [Google Scholar]
  15. 15. R. SEDGEWICK, Algorithms, Addison-Wesley, second edition, 1988. [Zbl: 0717.68005] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.