Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 25, Number 1, 1991
Page(s) 19 - 38
DOI https://doi.org/10.1051/ita/1991250100191
Published online 01 February 2017
  1. ChI83. T.-H. CHAN and O. IBARRA, On the Finite-Valuedness Problem for Sequential Machines, TCS, 1983, 23, pp. 95-101. [MR: 693072] [Zbl: 0503.68037]
  2. E74. S. EILENBERG, Automata, Languages, and Machines, Academic Press, New York, N.Y., 1974, A. [MR: 530382]
  3. Hs78. M. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass., 1978. [MR: 526397] [Zbl: 0411.68058]
  4. HoU79. J. HOPCROFT and J. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass., 1979. [MR: 645539] [Zbl: 0426.68001]
  5. Ja77. G. JACOB, Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices, T.C.S., 1977, 5, pp. 183-204. [MR: 473075] [Zbl: 0388.15001]
  6. Ku88. W. KUICH, Finite Automata and Ambiguity, Report 253 of the IIG, Technische Universität Graz, 1988.
  7. La09. E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909. [JFM: 40.0232.08]
  8. Le87. H. LEUNG, An Algebraic Method for Solving Decision Problems in Finite Automata Theory, Ph. D. Thesis, The Pennsylvania State University, 1987.
  9. MaSi77. A MANDEL and I. SIMON, On Finite Semigroups of Matrices, T.C.S., 1977, 5, pp. 101-111. [MR: 473070] [Zbl: 0368.20049]
  10. Ms84.1. J.-P. MASSIAS, Ordre maximum d'un élément du groupe symétrique et applications, Thèse 3e cycle, Université de Limoges, 1984.
  11. Ms84.2. J.-P. MASSIAS, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, Annales Faculté des Sciences Toulouse, 1984, VI, pp. 269-281. [EuDML: 73167] [MR: 799599] [Zbl: 0574.10043]
  12. MsNRo88. J.-P. MASSIAS, J.-L. NICOLAS and G. ROBIN, Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique, Acta Arithmetica, 1988, 50, pp. 221-242. [EuDML: 206137] [MR: 960551] [Zbl: 0588.10049]
  13. McZ75. R. MCNAUGHTON and Y. ZALCSTEIN, The Burnside Problem for Semi-groups, J. Algebra, 1975, 34, pp. 292-299. [MR: 374301] [Zbl: 0302.20054]
  14. Re77. C. REUTENAUER, Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, Thèse 3e cycle, Université Paris-VI, 1977.
  15. Se89. H. SEIDL, On the Finite Degree of Ambiguity of Finite Tree Automata, Acta Informatica, 1989, 26, pp. 527-542. [MR: 1006265] [Zbl: 0683.68049]
  16. Sr88. L. STAIGER, personal communication.
  17. WeSe86. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Proc. M.F.C.S., 1986, in: L.N.C.S. 233, Springer-Verlag, pp. 620-629. [MR: 874641] [Zbl: 0617.68055]
  18. Tu90 P. TURAKAINEN, On the Finitness of the Multiplicative Monoid generated by a Nonnegative Matrix. Bull. EATCS, 1990, 40, pp. 270-272. [Zbl: 0746.20047]
  19. We87. A. WEBER, Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern, Dissertation, Goethe-Universität Frankfurt am Main, 1987.
  20. WeSe88. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Preprint, Goethe-Universität Frankfurt am Main, 1988, T.C.S. (to appear). [MR: 874641] [Zbl: 0738.68059]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.