Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 25, Number 1, 1991
Page(s) 19 - 38
DOI https://doi.org/10.1051/ita/1991250100191
Published online 01 February 2017
  1. ChI83. T.-H. CHAN and O. IBARRA, On the Finite-Valuedness Problem for Sequential Machines, TCS, 1983, 23, pp. 95-101. [MR: 693072] [Zbl: 0503.68037] [Google Scholar]
  2. E74. S. EILENBERG, Automata, Languages, and Machines, Academic Press, New York, N.Y., 1974, A. [MR: 530382] [Google Scholar]
  3. Hs78. M. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass., 1978. [MR: 526397] [Zbl: 0411.68058] [Google Scholar]
  4. HoU79. J. HOPCROFT and J. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass., 1979. [MR: 645539] [Zbl: 0426.68001] [Google Scholar]
  5. Ja77. G. JACOB, Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices, T.C.S., 1977, 5, pp. 183-204. [MR: 473075] [Zbl: 0388.15001] [Google Scholar]
  6. Ku88. W. KUICH, Finite Automata and Ambiguity, Report 253 of the IIG, Technische Universität Graz, 1988. [Google Scholar]
  7. La09. E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909. [JFM: 40.0232.08] [Google Scholar]
  8. Le87. H. LEUNG, An Algebraic Method for Solving Decision Problems in Finite Automata Theory, Ph. D. Thesis, The Pennsylvania State University, 1987. [Google Scholar]
  9. MaSi77. A MANDEL and I. SIMON, On Finite Semigroups of Matrices, T.C.S., 1977, 5, pp. 101-111. [MR: 473070] [Zbl: 0368.20049] [Google Scholar]
  10. Ms84.1. J.-P. MASSIAS, Ordre maximum d'un élément du groupe symétrique et applications, Thèse 3e cycle, Université de Limoges, 1984. [Google Scholar]
  11. Ms84.2. J.-P. MASSIAS, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, Annales Faculté des Sciences Toulouse, 1984, VI, pp. 269-281. [EuDML: 73167] [MR: 799599] [Zbl: 0574.10043] [Google Scholar]
  12. MsNRo88. J.-P. MASSIAS, J.-L. NICOLAS and G. ROBIN, Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique, Acta Arithmetica, 1988, 50, pp. 221-242. [EuDML: 206137] [MR: 960551] [Zbl: 0588.10049] [Google Scholar]
  13. McZ75. R. MCNAUGHTON and Y. ZALCSTEIN, The Burnside Problem for Semi-groups, J. Algebra, 1975, 34, pp. 292-299. [MR: 374301] [Zbl: 0302.20054] [Google Scholar]
  14. Re77. C. REUTENAUER, Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, Thèse 3e cycle, Université Paris-VI, 1977. [Google Scholar]
  15. Se89. H. SEIDL, On the Finite Degree of Ambiguity of Finite Tree Automata, Acta Informatica, 1989, 26, pp. 527-542. [MR: 1006265] [Zbl: 0683.68049] [Google Scholar]
  16. Sr88. L. STAIGER, personal communication. [Google Scholar]
  17. WeSe86. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Proc. M.F.C.S., 1986, in: L.N.C.S. 233, Springer-Verlag, pp. 620-629. [MR: 874641] [Zbl: 0617.68055] [Google Scholar]
  18. Tu90 P. TURAKAINEN, On the Finitness of the Multiplicative Monoid generated by a Nonnegative Matrix. Bull. EATCS, 1990, 40, pp. 270-272. [Zbl: 0746.20047] [Google Scholar]
  19. We87. A. WEBER, Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern, Dissertation, Goethe-Universität Frankfurt am Main, 1987. [Google Scholar]
  20. WeSe88. A. WEBER and H. SEIDL, On the Degree of Ambiguity of Finite Automata, Preprint, Goethe-Universität Frankfurt am Main, 1988, T.C.S. (to appear). [MR: 874641] [Zbl: 0738.68059] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.