Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 6, 1990
Page(s) 561 - 588
DOI https://doi.org/10.1051/ita/1990240605611
Published online 01 February 2017
  1. 1. A. C. AITKEN, On te Evaluation of Determinants, the Formation of their Adjugates, and the Practical Solution of Simultaneous Linear Equations, Proc. Edinburgh Math. Soc., série 2, III, 1932, p. 207-219. [Zbl: 0006.14702]
  2. 2. E. H. BAREISS, Sylvester's Identity and Multistep Integer Preserving Gaussian Elimination, Math. Comp., 22, 565-578 (1968). [MR: 226829] [Zbl: 0187.09701]
  3. 3. BORCHARDT, Zur Theorie der Elimination und Kettenbruch-Entwichlung, Math. Abh. der Akad. der Wissenschaften zu Berlin, 1878, p. 1-17.
  4. 4. W. S. BROWN, On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors, J.A.C.M., 1971, 18, p. 476-504. [MR: 307450] [Zbl: 0226.65040]
  5. 5. W. S. BROWN et J. F. TRAUB, On Euclid's Algorithm and the Theory of Subresultants, J.A.C.M., 1971, 18, p. 505-514. [MR: 303684] [Zbl: 0226.65041]
  6. 6. M. CHARDIN, Un algorithme pour le calcul du résultant de trois polynômes homogènes en trois variables, Centre de Mathématiques et Laboratoire d'informatique, Ecole Polytechnique, 91128 Palaiseau Cedex (prépublication).
  7. 7. G. E. COLLINS, Subresultants and Reduced Polynomial Remainder Séquences, J.A.C.M., 1967, 14, p. 128-142. [MR: 215512] [Zbl: 0152.35403]
  8. 8. M. COSTE et M.-F. ROY, Thom's Lemma, the Coding of Real Algebraic Numbers and the Computation of the Topology of Semi-AIgebraic Sets, J. Symbolic Computations, 1988, 5, p. 121-129. [MR: 949115] [Zbl: 0689.14006]
  9. 9. L. GONZALEZ, H. LOMBARDI, T. RECIO et M.-F. ROY, Spécialisation de la suite de Sturm et sous-résultants (II), R.A.I..R.O., 1990, p.000-000. [EuDML: 273943] [Zbl: 0732.68059]
  10. 10. L. GONZALEZ H. LOMBARDI T. RECIO et M.-F. ROY, Sturm-Habicht Sequences, Proceedings I.S.S.A.C, 1989, p. 136-146.
  11. 11. L. GONZALEZ, H. LOMBARDI, T. RECIO et M.-F. ROY, Spécialisation de la suite du Sturm et sous-résultants, version détaillée, CALSYF, Journées du GRECO de Calcul Formel, 1989. [Zbl: 0732.68059]
  12. 12. W. HABICHT, Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens, Comm. Math. Helvetici, 1948, 21 p. 99-116. [EuDML: 138937] [MR: 23796] [Zbl: 0029.24402]
  13. 13. A. LASCOUX, La résultante de deux polynômes, Séminaire d'Algèbre M. P. Malliavin, Lecture Notes in Math., 1984-1985. [MR: 926297] [Zbl: 0605.13007]
  14. 14. H. LOMBARDI, Sous-résultants, suite de Sturm, spécialisation, Publications Mathématiques de Besançon (Théorie des Nombres). 1988-89, fascicule 2. [MR: 1052949]
  15. 15. R. Loos, Generalized Polynomial Reaminder Sequences, Computer Algebra, Symbolic and Algebraic Computation, Buchberger, Collins, Loos éd., Springer-Verlag, 1982, p. 115-138. [MR: 728969] [Zbl: 0577.13001]
  16. 16. M. MIGNOTTE, Some useful bounds, Computer Algebra, Symbolic and Algebraic Computation, Buchberger, Collins, Loos éd., Springer-Verlag, 1982, p. 259-263. [MR: 728976] [Zbl: 0498.12019]
  17. 17. C. STURM, Mémoire sur la résolution des équations numériques, Inst. France Sc. Math. Phys., 1835, 6.
  18. 18. J. J. SYLVESTER, On a Theory of Syzygetic Relations of two Rational Integral Functions, Comprising an Application to the Theory of Sturm's Function, Trans. Roy. Soc. London, 1853; repris dans Sylvester : Collected Math Papers, Chelsea Pub. Comp. NY, 1983, 1, p. 429-586.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.