Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 5, 1990
Page(s) 429 - 440
DOI https://doi.org/10.1051/ita/1990240504291
Published online 01 February 2017
  1. 1. K. A. BAKER, Finite equational bases for finite, algebras in a congruence-distributive equational class, Adv. in Math., 1977, 24, p. p 207-243. [MR: 447074] [Zbl: 0356.08006] [Google Scholar]
  2. 2. J. A. BERGSTRA and J. V. TUCKER, Algebraic specification of computable and semicomputable data structures, Dept. of Computer Science Research Report IW 115, Amsterdam, 1979. [Zbl: 0419.68029] [Google Scholar]
  3. 3. J. A. BERGSTRA and J. V. TUCKER, On bounds for tbe specification of finite data types by means of equations and conditional equations, Centre for Math. and Computer Science Report IW 131, Amsterdam, 1980. [Zbl: 0421.68020] [Google Scholar]
  4. 4. J. A. BERGSTRA and J. V. TUCKER, The completeness of algebraic specification methods for computable data types, Information and Control, 1982, 54, pp. 186-200. [MR: 719442] [Zbl: 0513.68017] [Google Scholar]
  5. 5. J. A. BERGSTRA and J. V. TUCKER, Initial and final algebra semantics for data type specifications; two characterization theorems, SIAM J. on Computing, 1983, 12, pp. 366-387. [MR: 697167] [Zbl: 0515.68016] [Google Scholar]
  6. 6. J. A. BERGSTRA and J. V. TUCKER, Algebraic specifications of computable and semicomputable data types, Theoretical Computer Science, 1987, 50, pp. 137-181. [MR: 907280] [Zbl: 0637.68013] [Google Scholar]
  7. 7. S. BLOOM and R. TINDEL, Varieties of "if-then-else", SIAM J. on Computing, 1983, 12, pp. 677-707. [MR: 721007] [Zbl: 0518.68010] [Google Scholar]
  8. 8. S. BURRIS and H. F. SANKAPPANAVAR, A course in Universal Algebra, Springer-Verlag, 1981. [MR: 648287] [Zbl: 0478.08001] [Google Scholar]
  9. 9. M. DAVIS, Y. MATIJASEVIC and J. ROBINSON, Hilbert's tenth Problem. Diophantine equations: positive aspect of a negative solution, Proceed. of Symposia in Pure Math., 1976, 28, pp. 323-378. [MR: 432534] [Zbl: 0346.02026] [Google Scholar]
  10. 10. H. EHRIG and B. MAHR, Fundamentals of Algebraic Specification 1, Monograph EATCS, Springer-Verlag, 1985. [MR: 788495] [Zbl: 0557.68013] [Google Scholar]
  11. 11. I. GUESSARIAN and J. MESEGUER, On the axiomatization of "if-then-else", SIAM J. on Computing, 1987, 16, pp. 332-357. [MR: 882535] [Zbl: 0628.68032] [Google Scholar]
  12. 12. J. HEERING, Partial evaluation and ω-completeness of algebraic specifications, Theoretical Computer Science, 1986, 43, pp 149-167. [MR: 855969] [Zbl: 0606.68017] [Google Scholar]
  13. 13. R. LYNDON, Identities in finite algebras, Proc. Amer. Math. Soc, 1954, 5. pp..8-9. [MR: 60482] [Zbl: 0055.02705] [Google Scholar]
  14. 14. A. I. MAL'CEV, Constructive algebras I, Russian Mathematicaï Surveys, 1961, 16, pp. 77-129. [MR: 151377] [Google Scholar]
  15. 15. R. MCKENZIE, On spectra and the negative solution of the decision problem for identites having a finite non-trivial model, J. Symb. Logic, 1975, 40, pp. 186-196. [MR: 376323] [Zbl: 0316.02052] [Google Scholar]
  16. 16. A. H. MEKLER and E. M. NELSON, Equational Bases for "if then-else", SIAM J. on Computing, 1987, 16, pp. 465-485. [MR: 889403] [Zbl: 0654.68029] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.