Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 1, 1990
Page(s) 1 - 15
DOI https://doi.org/10.1051/ita/1990240100011
Published online 01 February 2017
  1. 1. A. AHO, J. HOPCROFT et J. ULLMANN, The Design and Analysis of Computers Algorithms, Addison-Wesley, Reading, MA, 1974, [MR: 413592] [Zbl: 0326.68005]
  2. 2. J. ARSAC, Le construction de programmes structurés, Dunod, Paris, 1977. [Zbl: 0451.68014]
  3. 3. J. ARSAC, Les bases de la programmation, Dunod, Paris, 1983. [Zbl: 0624.68004]
  4. 4. J. ARSAC, Jeux et casse-tête à programmer, Dunod, Paris, 1985.
  5. 5. M. D. ATKINSON, The Cyclic Towers of Hanoï, Inform. Process. Lett., vol. 13, 1981, p. 118-119. [MR: 645457] [Zbl: 0467.68083]
  6. 6. W. R. BALL, Mathematical Recreations and Essays, McMillan, London, 1892. Voir aussi [Zbl: 65.1075.02]
  7. W. R. BALL et H. S. M. COXETER, Mathematical Recreations and Essays, University of Toronto Press, Toronto, 1974, p. 316-317. [MR: 351741]
  8. 7. D. T. BARNARD, The Towers of Hanoï : an Exercise in Non Recursive Algorithm Development, Technical Report 80-103, Dept. of Computing and Information Science, Queen's University, 1980.
  9. 8. Br. A. BROUSSEAU, Towers of Hanoï with More Pegs, J. Recreat. Math., vol. 8, (3), 1976, p. 165-176. [Zbl: 0332.05003]
  10. 9. P. BUNEMAN et L. LEVY, The Towers of Hanoï Problem, Inform. Process. Lett., vol. 10, 1980, p. 243-244. [MR: 585392] [Zbl: 0439.05010]
  11. 10. G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE et G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, vol. 108, 1980, p. 401-419. [EuDML: 87381] [MR: 614317] [Zbl: 0472.10035]
  12. 11. N. CLAUS (anagramme de Lucas), La tour de Hanoï, jeu de calcul, Revue Science et Nature, vol. 1, n° 8, 1884, p. 127-128.
  13. 12. A. COBHAM, Uniform Tag Sequences, Math. Syst. Theory, vol. 6, 1972, p. 164-192. [MR: 457011] [Zbl: 0253.02029]
  14. 13. P. CULL et E. ECKLUND, Towers of Hanoï and Analysis of Algorithms, Amer. Math. Monthly, vol. 92, (6), June/July 1985. [MR: 795250] [Zbl: 0589.90086]
  15. 14. H. E. DUDENEY, The Canterbury Puzzles, Thos. Nelson & Sons, 1919, réédition Dovers Publications Ltd, New York, 1958.
  16. 15. J. ENGELFRIET, The Trees of Hanoï, 1981, preprint.
  17. 16. M. C. ER, A Representation Approach to the Towers of Hanoï Problem, The Comput. J., 1982, p. 442-447. [Zbl: 0493.90100]
  18. 17. M. C. ER, An Iterative Solution to the Cyclic Towers of Hanoï Problem, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.
  19. 18. M. C. ER, The Cyclic Towers of Hanoï : a Generalization, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.
  20. 19. M. C. ER, A Generalization of the Cyclic Towers of Hanoï, Technical Report, Dept. of Computing Science, University of Wollogang, 1982.
  21. 20. M. C. ER, Towers of Hanoï with Black and White Discs, J. Inform. Optim. Sci., vol. 6, (1), 1985, p. 87-93. [MR: 793864]
  22. 21. M. C. ER, The Towers of Hanoï and Binary Numerals, J. Inform. Optim. Sci., vol. 6, (2), 1985, p. 147-152. [MR: 796981] [Zbl: 0578.68054]
  23. 22. M. C. ER, The Complexity of the Generalised Cyclic Towers of Hanoï, J. Algorithms, vol. 6, (3), 1985, p. 351-358. [MR: 800725] [Zbl: 0576.68036]
  24. 23. J.-C. FOURNIER, Pour en finir avec la dérécursivation du problème des tours de Hanoï, Actes Journée A.F.C.E.T. Combinatoire, Lyon-I, 1985. [Zbl: 0701.68039]
  25. 24. J. S. FRAME et B. M. STEWART, Solution of Problem n° 3918, Amer. Math. Monthly, vol. 48, 1941, p. 216-219. [MR: 1525110]
  26. 25. M. GARDNER, Mathemaiical Puzzles and Diversions, Simon & Schuster, New York, 1958, p. 55-62.
  27. 26. M. GARDNER, Mathematical Games : the CuriousPropertiesof the Gray Code and How it Can Be Used to Solve Puzzles, Sci. Amer., août 1972, p. 106-109.
  28. 27. C. GERETY et P. CULL, Time Complexity of the Towers of Hanoï Problem, SIGACT News, vol. 18, (1), 1986. [Zbl: 0621.68029]
  29. 28. J. HARDOUIN-DUPARC, Génération de mots par des piles d'automates, 1985, preprint.
  30. 29. P. J. HAYES, A Note on the Towers of Hanoï Problem, The Comput. J., 1977, p. 282-285. [Zbl: 0362.68057]
  31. 30. K. JACOBS et M. KEANE, On 0-1 Sequences of Toeplitz Type, Z. Warsch. Geb., vol. 13, 1969, p. 123-131. [MR: 255766] [Zbl: 0195.52703]
  32. 31. M. S. KRISHNAMOORTHY et S. BISWAS, The Generalized Towers of Hanoï (preprint), 1978.
  33. 32. I. LAVALLÉE, Note sur le problème des tours de Hanoï, Rev. Roumaine Math. pures et appl., vol. 30, 1985, p. 433-438. [MR: 802766] [Zbl: 0577.05010]
  34. 33. B. MEYER et C. BAUDOUIN, Méthodes de programmation, Eyrolles, Paris, 3e édition, 1984. [Zbl: 0407.68002]
  35. 34. S. MINKER, Three Variations on the Towers of Hanoï Problem, S. M. Thesis, University of Pennsylvania, 1983.
  36. 35. H. PARTSCH et P. PEPPER, A Family of Rules for Recursion Removal, 1986, preprint. [Zbl: 0345.68011] [MR: 443407]
  37. 36. G. RAUZY, Cours de D.E.A. (communication privée), 1986.
  38. 37. J. S. ROHL, Recursion via Pascal, Cambridge University Press, 1984. [Zbl: 0547.68003]
  39. 38. T. ROTH, The Tower of Brahma Revisited, J. Recreat. Math., vol. 7, n° 2, 1974, p. 116-119.
  40. 39. A. SAINTE-LAGUE, Avec des nombres et des lignes, Vuibert, Paris, 1942, p. 71-78.
  41. 40. F. SCHUH, The Master Book of Mathematical Recreations, Dover Publications, Inc., New York, 1968, p. 119-121. [Zbl: 0191.27406]
  42. 41. T. R. WALSH, The Towers of Hanoï Revisited: Moving the Rings by Counting the Moves, Inform. Process. Lett., vol. 15, 1982, p. 64-67. [MR: 675870] [Zbl: 0487.90099]
  43. 42. D. WOOD, The Towers of Brahma and Hanoï Revisited, J. Recreat. Math., vol. 14, n° 1, 1981, p. 17-24. [MR: 629340] [Zbl: 0486.05014]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.