Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 24, Number 1, 1990
Page(s) 1 - 15
DOI https://doi.org/10.1051/ita/1990240100011
Published online 01 February 2017
  1. 1. A. AHO, J. HOPCROFT et J. ULLMANN, The Design and Analysis of Computers Algorithms, Addison-Wesley, Reading, MA, 1974, [MR: 413592] [Zbl: 0326.68005] [Google Scholar]
  2. 2. J. ARSAC, Le construction de programmes structurés, Dunod, Paris, 1977. [Zbl: 0451.68014] [Google Scholar]
  3. 3. J. ARSAC, Les bases de la programmation, Dunod, Paris, 1983. [Zbl: 0624.68004] [Google Scholar]
  4. 4. J. ARSAC, Jeux et casse-tête à programmer, Dunod, Paris, 1985. [Google Scholar]
  5. 5. M. D. ATKINSON, The Cyclic Towers of Hanoï, Inform. Process. Lett., vol. 13, 1981, p. 118-119. [MR: 645457] [Zbl: 0467.68083] [Google Scholar]
  6. 6. W. R. BALL, Mathematical Recreations and Essays, McMillan, London, 1892. Voir aussi [Zbl: 65.1075.02] [Google Scholar]
  7. W. R. BALL et H. S. M. COXETER, Mathematical Recreations and Essays, University of Toronto Press, Toronto, 1974, p. 316-317. [MR: 351741] [Google Scholar]
  8. 7. D. T. BARNARD, The Towers of Hanoï : an Exercise in Non Recursive Algorithm Development, Technical Report 80-103, Dept. of Computing and Information Science, Queen's University, 1980. [Google Scholar]
  9. 8. Br. A. BROUSSEAU, Towers of Hanoï with More Pegs, J. Recreat. Math., vol. 8, (3), 1976, p. 165-176. [Zbl: 0332.05003] [Google Scholar]
  10. 9. P. BUNEMAN et L. LEVY, The Towers of Hanoï Problem, Inform. Process. Lett., vol. 10, 1980, p. 243-244. [MR: 585392] [Zbl: 0439.05010] [Google Scholar]
  11. 10. G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE et G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, vol. 108, 1980, p. 401-419. [EuDML: 87381] [MR: 614317] [Zbl: 0472.10035] [Google Scholar]
  12. 11. N. CLAUS (anagramme de Lucas), La tour de Hanoï, jeu de calcul, Revue Science et Nature, vol. 1, n° 8, 1884, p. 127-128. [Google Scholar]
  13. 12. A. COBHAM, Uniform Tag Sequences, Math. Syst. Theory, vol. 6, 1972, p. 164-192. [MR: 457011] [Zbl: 0253.02029] [Google Scholar]
  14. 13. P. CULL et E. ECKLUND, Towers of Hanoï and Analysis of Algorithms, Amer. Math. Monthly, vol. 92, (6), June/July 1985. [MR: 795250] [Zbl: 0589.90086] [Google Scholar]
  15. 14. H. E. DUDENEY, The Canterbury Puzzles, Thos. Nelson & Sons, 1919, réédition Dovers Publications Ltd, New York, 1958. [Google Scholar]
  16. 15. J. ENGELFRIET, The Trees of Hanoï, 1981, preprint. [Google Scholar]
  17. 16. M. C. ER, A Representation Approach to the Towers of Hanoï Problem, The Comput. J., 1982, p. 442-447. [Zbl: 0493.90100] [Google Scholar]
  18. 17. M. C. ER, An Iterative Solution to the Cyclic Towers of Hanoï Problem, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. [Google Scholar]
  19. 18. M. C. ER, The Cyclic Towers of Hanoï : a Generalization, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. [Google Scholar]
  20. 19. M. C. ER, A Generalization of the Cyclic Towers of Hanoï, Technical Report, Dept. of Computing Science, University of Wollogang, 1982. [Google Scholar]
  21. 20. M. C. ER, Towers of Hanoï with Black and White Discs, J. Inform. Optim. Sci., vol. 6, (1), 1985, p. 87-93. [MR: 793864] [Google Scholar]
  22. 21. M. C. ER, The Towers of Hanoï and Binary Numerals, J. Inform. Optim. Sci., vol. 6, (2), 1985, p. 147-152. [MR: 796981] [Zbl: 0578.68054] [Google Scholar]
  23. 22. M. C. ER, The Complexity of the Generalised Cyclic Towers of Hanoï, J. Algorithms, vol. 6, (3), 1985, p. 351-358. [MR: 800725] [Zbl: 0576.68036] [Google Scholar]
  24. 23. J.-C. FOURNIER, Pour en finir avec la dérécursivation du problème des tours de Hanoï, Actes Journée A.F.C.E.T. Combinatoire, Lyon-I, 1985. [Zbl: 0701.68039] [Google Scholar]
  25. 24. J. S. FRAME et B. M. STEWART, Solution of Problem n° 3918, Amer. Math. Monthly, vol. 48, 1941, p. 216-219. [MR: 1525110] [Google Scholar]
  26. 25. M. GARDNER, Mathemaiical Puzzles and Diversions, Simon & Schuster, New York, 1958, p. 55-62. [Google Scholar]
  27. 26. M. GARDNER, Mathematical Games : the CuriousPropertiesof the Gray Code and How it Can Be Used to Solve Puzzles, Sci. Amer., août 1972, p. 106-109. [Google Scholar]
  28. 27. C. GERETY et P. CULL, Time Complexity of the Towers of Hanoï Problem, SIGACT News, vol. 18, (1), 1986. [Zbl: 0621.68029] [Google Scholar]
  29. 28. J. HARDOUIN-DUPARC, Génération de mots par des piles d'automates, 1985, preprint. [Google Scholar]
  30. 29. P. J. HAYES, A Note on the Towers of Hanoï Problem, The Comput. J., 1977, p. 282-285. [Zbl: 0362.68057] [Google Scholar]
  31. 30. K. JACOBS et M. KEANE, On 0-1 Sequences of Toeplitz Type, Z. Warsch. Geb., vol. 13, 1969, p. 123-131. [MR: 255766] [Zbl: 0195.52703] [Google Scholar]
  32. 31. M. S. KRISHNAMOORTHY et S. BISWAS, The Generalized Towers of Hanoï (preprint), 1978. [Google Scholar]
  33. 32. I. LAVALLÉE, Note sur le problème des tours de Hanoï, Rev. Roumaine Math. pures et appl., vol. 30, 1985, p. 433-438. [MR: 802766] [Zbl: 0577.05010] [Google Scholar]
  34. 33. B. MEYER et C. BAUDOUIN, Méthodes de programmation, Eyrolles, Paris, 3e édition, 1984. [Zbl: 0407.68002] [Google Scholar]
  35. 34. S. MINKER, Three Variations on the Towers of Hanoï Problem, S. M. Thesis, University of Pennsylvania, 1983. [Google Scholar]
  36. 35. H. PARTSCH et P. PEPPER, A Family of Rules for Recursion Removal, 1986, preprint. [Zbl: 0345.68011] [MR: 443407] [Google Scholar]
  37. 36. G. RAUZY, Cours de D.E.A. (communication privée), 1986. [Google Scholar]
  38. 37. J. S. ROHL, Recursion via Pascal, Cambridge University Press, 1984. [Zbl: 0547.68003] [Google Scholar]
  39. 38. T. ROTH, The Tower of Brahma Revisited, J. Recreat. Math., vol. 7, n° 2, 1974, p. 116-119. [Google Scholar]
  40. 39. A. SAINTE-LAGUE, Avec des nombres et des lignes, Vuibert, Paris, 1942, p. 71-78. [Google Scholar]
  41. 40. F. SCHUH, The Master Book of Mathematical Recreations, Dover Publications, Inc., New York, 1968, p. 119-121. [Zbl: 0191.27406] [Google Scholar]
  42. 41. T. R. WALSH, The Towers of Hanoï Revisited: Moving the Rings by Counting the Moves, Inform. Process. Lett., vol. 15, 1982, p. 64-67. [MR: 675870] [Zbl: 0487.90099] [Google Scholar]
  43. 42. D. WOOD, The Towers of Brahma and Hanoï Revisited, J. Recreat. Math., vol. 14, n° 1, 1981, p. 17-24. [MR: 629340] [Zbl: 0486.05014] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.