Free Access
RAIRO-Theor. Inf. Appl.
Volume 23, Number 1, 1989
Page(s) 87 - 99
Published online 03 February 2017
  1. 1. A. BORODIN, S. A. COOK, P. W. DYMOND, W. L. RUZZO, and M. TOMPA, Two Applications of Complementation via Inductive Counting, manuscript, Sept. 1987. [Google Scholar]
  2. 2. S. A. COOK, Characterizations of Pushdown Machines in Terms of Timebounded Computers, Journ. of the ACM 18,Vol. 1, 1971, pp. 4-18. [MR: 292605] [Zbl: 0222.02035] [Google Scholar]
  3. 3. A. K. CHANDRA, D. C. KOZEN, and L. J. STOCKMEYER, Alternation, Journ. of the ACM 28, Vol. 1, 1981, pp. 114-133. [MR: 603186] [Zbl: 0473.68043] [Google Scholar]
  4. 4. S. GREIBACH, Checking Automata and One-way Stack Languages, Journ. of Computer and System Sciences, Vol. 3, 1969, pp. 196-217. [MR: 243953] [Zbl: 0174.02702] [Google Scholar]
  5. 5. J. E. HOPCROFT, and J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Mass., 1979. [MR: 645539] [Zbl: 0426.68001] [Google Scholar]
  6. 6. N. IMMERMAN, Nondeterministic Space is Closed Under Complement, Techn. Report, Yale University, YALEU/DCS/TR 552, July 1987. [Zbl: 0668.68056] [MR: 961049] [Google Scholar]
  7. 7. B. JENNER, B. KIRSIG, and K.-J. LANGE, The Logarithmic Alternation Hierarchy Collapses: A∑L2 = A∏L2 (extended version), to be published in Information and Computation. [Zbl: 0629.68051] [Google Scholar]
  8. 8. K.-J. LANGE, B. JENNER, and B. KIRSIG, The Logarithmic Alternation Hierarchy Collapses: A∑L2 = A∏L2, Proc. of the 14th ICALP, Karlsruhe, July 1987, Lect. Notes in Comp. Sci., Vol. 267, pp.531-541. [MR: 912734] [Zbl: 0629.68051] [Google Scholar]
  9. 9. R. E. LADNER, R. J. LIPTON, and L. J . STOCKMEYER, Alternating Pushdown Automata, Proc. of the 19th IEEE Symp. on Foundations of Comp. Sci., Ann Arbor, Mich., 1978, pp. 92-106. [Zbl: 0538.68039] [Google Scholar]
  10. 10. R. E. LADNER, L. J. STOCKMEYER, and R. J. LIPTON, Alternation Bounded Auxiliary Push-down Automata, Information and Control, Vol. 62, 1984, pp. 93-108. [MR: 789889] [Zbl: 0589.68058] [Google Scholar]
  11. 11. U. SCHÖNING, and K. W. WAGNER, Collapsing Oracle Hierarchies, Census Functions and Logarithmically Many Queries, Report No. 140,Universität Augsburg, May 1987. [Zbl: 0648.68065] [MR: 935790] [Google Scholar]
  12. 12. L. J. STOCKMEYER, The Polynomial-time Hierarchy, Theoret. Comp. Sci.,Vol. 3, 1976, pp. 1-22. [MR: 438810] [Zbl: 0353.02024] [Google Scholar]
  13. 13. I. H. SUDBOROUGH, On the Tape Complexity of Deterministic Context-Free Languages, Journ. of the ACM 25, Vol. 3, 1978, pp. 405-414. [MR: 498563] [Zbl: 0379.68054] [Google Scholar]
  14. 14. R. SZELEPCSÉNYI, The Method of Forcing for Nondeterministic Automata, Bull. European Assoc. Theoret. Comp. Sci. No. 33, Oct. 1987 pp. 96-100. [Zbl: 0664.68082] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.