Free Access
Issue |
RAIRO-Theor. Inf. Appl.
Volume 22, Number 2, 1988
|
|
---|---|---|
Page(s) | 245 - 265 | |
DOI | https://doi.org/10.1051/ita/1988220202451 | |
Published online | 01 February 2017 |
- 1. S. N. BHATT et F. T. LEIGHTON, A Framework for Solving VLSI Graph Layout Problems, J. Comput. Syst. Sci., vol. 28, 1984, p. 300-343. [MR: 760549] [Zbl: 0543.68052] [Google Scholar]
- 2. P. CHARRIER et J. ROMAN, Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées, Rapport interne Informatique, Université de Bordeaux-I, 1986, soumis pour publication dans Numerische Mathematik. [EuDML: 133364] [Zbl: 0663.65020] [Google Scholar]
- 3. P. CHARRIER et J. ROMAN, Study of the Parallelism Inducedby a Nested Dissection Method and of its Implementation on a Message-Passing Multiprocessor Computeur, Rapport interne Informatique, Université de Bordeaux-I, 1987, soumis pour publication dans S.I.A.M. Journal of Computing. [Google Scholar]
- 4. P. G. CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de mathématiques supérieures, Presses de l'Université de Montréal, 1976. [MR: 495010] [Zbl: 0363.65083] [Google Scholar]
- 5. M. C. COUNILH, J. M. LEPINE, J. ROMAN, F. RUBI et B. VAUQUELIN, Description du calculateur CHEOPS, Rapport interne Informatique, Université de Bordeaux-I, 1986. [Google Scholar]
- 6. H. N. DJIDJEV, On the Problem of Partioning Planar Graphs, S.I.A.M. J. Algebraic Discrete Methods, Vol. 3, 1982, p. 229-240. [MR: 655563] [Zbl: 0503.05057] [Google Scholar]
- 7. J. A. GEORGE, Nested Dissection of a Regular Finite Element Mesh., S.I.A.M. J. Numer. Anal., Vol. 10, 1973, p. 345-367. [MR: 388756] [Zbl: 0259.65087] [Google Scholar]
- 8. J. A. GEORGE et J. W. H. LIU, Computer Solution of Large Spar se Positive Defïnite Systems, Englewood Cliffs, New Jersey, Prentice Hall, 1981. [MR: 646786] [Zbl: 0516.65010] [Google Scholar]
- 9. J. R. GILBERT, Some Nested Dissection Order is Nearly Optimal, Technical report 86-767, Department of Computer Science, Cornell University, 1986. [Google Scholar]
- 10. J. R. GILBERT, J. P. HUTCHINSON et R. E. TARJAN, A Separator Theorem for Graphs of Bounded Genus, J. Algorithms, vol. 5, 1984, p. 391-407. [MR: 756165] [Zbl: 0556.05022] [Google Scholar]
- 11. J. R. GILBERT, D. J. ROSE et A. EDENBRANDT, A Separator Theorem for Chordal Graphs, S.I.A.M. J. Algebraic Discrete Methods, vol. 5, 1984, p. 306-313. [MR: 752037] [Zbl: 0551.05049] [Google Scholar]
- 12. J. R. GILBERT et R. E. TARJAN, The Analysis of a Nested Dissection Algorithm, Numerische Mathematik, vol. 50, 1987, p. 377-404. [EuDML: 133161] [MR: 875164] [Zbl: 0645.65012] [Google Scholar]
- 13. H. T. KUNG, The Structure of Parallel Algorithm, Advances in Computers, vol.19, Academic Press, New York, 1980. [Google Scholar]
- 14. F. T. LEIGHTON, A Layout Strategy for VLSI which is Provably Good, Proc. 14th Ann. A.C.M. Symp. Theory Comput., 1982, p. 85-98. [Google Scholar]
- 15. R. J. LIPTON et R. E. TARJAN, A Separator Theorem for Planar Graphs, S.I.A.M. J. on Appl. Math., vol. 36, 1979, p. 177-189. [MR: 524495] [Zbl: 0432.05022] [Google Scholar]
- 16. R. J. LIPTON et R. E. TARJAN, Applications of a Planar Separator Theorem, S.I.A.M. J. Comput., vol. 9, 1980. p. 615-627 [MR: 584516] [Zbl: 0456.68077] [Google Scholar]
- 17. R. J. LIPTON, D. J. ROSE et R. E. TARJAN, Generalized Nested Dissection, S.I.A.M. J. Numer. Anal., vol. 16, 1979, p. 346-358. [MR: 526496] [Zbl: 0435.65021] [Google Scholar]
- 18. M. RAYNAL, Algorithmique du parallélisme: le problème de l'exclusion mutuelle, Dunod Informatique, 1984. [Google Scholar]
- 19. M. RAYNAL, Algorithmes distribués et protocoles, Eyrolles, Paris, 1985. [Google Scholar]
- 20. J. ROMAN, Dissection emboîtée et n°-théorème de séparation (l/2 ( σ ( l), Rapport interne Analyse appliquée et Informatique, Université de Bordeaux-I, 1984. [Google Scholar]
- 21. J. ROMAN, Calculs de complexité relatifs à une méthode de dissection emboîtée, Numerische Mathematik, vol.47, 1985, p. 175-190. [EuDML: 133030] [MR: 799683] [Zbl: 0537.65025] [Google Scholar]
- 22. D. J. ROSE, A Graph-Theoretic Study of the Numerical Solution of Sparse Positive Defïnite Systems of Linear Equations, Graph Theory and Computing, p. 183-217, R.C. Read, Academic Press, New York, 1973. [MR: 341833] [Zbl: 0266.65028] [Google Scholar]
- 23. D. J. ROSE, R. E. TARJAN et G. S. LUEKER, Algorithmic Aspects of Vertex Elimination on Graphs, S.I.A.M. J. Comput, vol. 5, 1976, p. 266-283. [MR: 408312] [Zbl: 0353.65019] [Google Scholar]
- 24. C. L. SETTZ, The Cosmic Cube, Commun. A.C.M., vol.28, n° 1, 1985, p. 22-33. [Google Scholar]
- 25. G. VARENNE, Dessins récursifs de graphes, Thèse de 3e cycle, Université de Paris-VII, Laboratoire Informatique Théorique et Programmation, 1985. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.