Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 4, 1987
Page(s) 479 - 495
DOI https://doi.org/10.1051/ita/1987210404791
Published online 01 February 2017
  1. 1. M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions, 1965, Dover Publications. [Zbl: 0171.38503] [Google Scholar]
  2. 2. G. G. BROWN and B. O. SHUBERT, On Random Binary Trees, Math. Op. Res., Vol. 9, No. 1, 1984, pp. 43-65. [MR: 736638] [Zbl: 0529.68035] [Google Scholar]
  3. 3. L. DEVROYE, A Probabilistic Analysis of Height of Tries and of the Complexity of Triesort, Acta Informatica, Vol. 21, 1984, pp. 229-237. [MR: 769900] [Zbl: 0555.68037] [Google Scholar]
  4. 4. P. FLAJOLET, Approximate Counting: a Detailed Analysis, BIT, Vol. 25, 1985, pp. 113-134. [MR: 785808] [Zbl: 0562.68027] [Google Scholar]
  5. 5. P. FLAJOLET and R. SEDGEWICK, Digital Search Trees Revisited, S.I.A.M. J. Comp., Vol. 15, No. 3, 1986, pp. 748-767. [MR: 850421] [Zbl: 0611.68041] [Google Scholar]
  6. 6. J. FRANÇON, On the Analysis of Algorithms for Trees, Th. Comp. Sc., Vol. 4, 1977, pp. 155-169. [MR: 447025] [Zbl: 0357.68033] [Google Scholar]
  7. 7. J. FRANÇON, Arbres binaires de recherche : propriétés combinatoires et applications, RAIRO, Inf. Th.,Vol. 10, No. 12, 1986; pp. 35-50. [EuDML: 92037] [Zbl: 0344.05103] [Google Scholar]
  8. 8. D. H. GREENE and D. E. KNUTH, Mathematics for the analysis of algorithms, 1981, Birkhäuser. [MR: 642197] [Zbl: 0481.68042] [Google Scholar]
  9. 9. Ph. JACQUET and M. REGNIER, Limiting Distributions for Trie Parameters, Proc. C.A.A.R 86, Lecture Notes in Comp. Sc, Vol. 214, 1986, pp. 198-210. [Google Scholar]
  10. 10. N. L. JOHNSON and S. KOTZ, Distribution in statistics: continuous univariate distributions, 1970, Wiley. [Zbl: 0213.21101] [Google Scholar]
  11. 11. P. KIRSCHENHOFER and H. PRODINGER, Some Further Results on Digital Search Trees, Proc. I.C.A.L.R., 1986, Lect. Notes Comp. Sc., Vol. 226, pp. 177-185. [MR: 864680] [Zbl: 0596.68053] [Google Scholar]
  12. 12. D. E. KNUTH, The Art of Computer Programming, Vol. I, 1969, Addison-Wesley. [Zbl: 0191.18001] [MR: 378456] [Google Scholar]
  13. 13. D. E. KNUTH, The Art of Computer Programming, Vol. III, 1973, Addison-Wesley. [Zbl: 0302.68010] [MR: 378456] [Google Scholar]
  14. 14. G. LOUCHARD, The Brownian Motion: a Neglected Tool for the Complexity Analysis of Sorted Tables Manipulations, R.A.I.R.O., Inf. Th., Vol. 4, 1983, pp. 365-385. [EuDML: 92194] [MR: 743895] [Zbl: 0523.68031] [Google Scholar]
  15. 15. G. LOUCHARD, Brownian Motion and Algorithms Complexity, B.I.T., Vol. 26, 1986 pp. 17-34. [MR: 833828] [Zbl: 0602.68034] [Google Scholar]
  16. 16. B. PITTEL, Paths in a Random Digital Tree: Limiting Distributions, Adv. Appl. Prob., Vol. 18, 1986, pp. 139-155. [MR: 827333] [Zbl: 0588.60012] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.