Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 21, Number 4, 1987
Page(s) 419 - 435
DOI https://doi.org/10.1051/ita/1987210404191
Published online 01 February 2017
  1. 1. A. BLASS and Y. GUREVICH, On the Unique Satisfiability Problem, Information and Control, Vol. 55, 1982, pp. 80-88. [MR: 727739] [Zbl: 0543.03027] [Google Scholar]
  2. 2. R. V. BOOK, T. J. LONG and A. L. SELMAN, Quantitative Relativizations of Complexity Classes, S.I.A.M. J. Comput, Vol. 13, 1984, pp. 461-487. [MR: 749702] [Zbl: 0599.03041] [Google Scholar]
  3. 3. J. CAI and L. HEMACHANDRA, The Boolean Hierarchy: Hardware Over NP, Proc. of the Structure in Complexity Theory Conference, Berkeley 1986 (to appear). [MR: 854893] [Zbl: 0611.68018] [Google Scholar]
  4. 4. H. GALPERIN and A. WIGDERSON, Succinct representation of graphs, Information and Control, Vol. 56, 1986, pp. 183-198. [MR: 735503] [Zbl: 0538.68053] [Google Scholar]
  5. 5. H. HELLER, Relativized Polynomial Hierarchies Extending Two Levels, Math. Syst. Theory, Vol. 17, 1984, pp. 71-84. [MR: 739981] [Zbl: 0543.03028] [Google Scholar]
  6. 6. J. KÖBLER, Untersuchung verschiedener polynomieller Reduktionsklassen von NP, diploma thesis, University of Stuttgart, 1985. [Google Scholar]
  7. 7. R. E. LADNER, The Circuit Value Problem is log Space Complete for P, SIGACT News, Vol. 7, 1975, pp. 18-20. [Google Scholar]
  8. 8. R. E. LADNER, N. A. LYNCH and A. L. SELMAN, A Comparison of Polynomial Time Reducibilities, Theor. Comput. Sci., Vol. 1, 1975, pp. 103-123. [MR: 395319] [Zbl: 0321.68039] [Google Scholar]
  9. 9. E. W. LEGETT and D. J. MOORE, Optimization Problems and the Polynomial Hierarchy, Theor. Comput. Sci., Vol 15, 1981, pp. 279-289. [MR: 632399] [Zbl: 0459.68016] [Google Scholar]
  10. 10. C. H. PAPADIMITRIOU, On the Complexity of Unique Solutions, Proc. 23rd Symp. Found of Comput. Sci, 1982, pp. 14-20. [MR: 780375] [Google Scholar]
  11. 11. C. H. PAPADIMITRIOU and M. YANNAKAKIS, The Complexity of Facets (and Some Facets of Complexity), Proc. 14th A.C.M. Symp. Theory of Comput., 1982, pp. 255-260. [Zbl: 0571.68028] [Google Scholar]
  12. 12. D. B. POSNER, Survey of Non-re Degress ≤0', in DRAKE/WAINER Eds, Recursion Theory: its Generalisations and Applications, Cambridge University Press, 1980, pp. 52-109. [MR: 598303] [Zbl: 0475.03020] [Google Scholar]
  13. 13. L. J. STOCKMEYER, The Polynomial-Time Hierarchy, Theor. Comput. Sci., Vol. 3, 1977, pp. 1-22. [MR: 438810] [Zbl: 0353.02024] [Google Scholar]
  14. 14. G. WECHSUNG and K. W. WAGNER, On the Boolean closure of NP, submitted for publication (extended abstract as: G. WECHSUNG, On the Boolean closure of NP; L.N.C.S., Vol. 199, 1985, pp. 485-493). [Zbl: 0581.68043] [Google Scholar]
  15. 15. K. W. WAGNER, The Complexity of Problems Concerning Graphs with Regularities, Proc. Symp. Math. Found. of Comput. Sci., 1984, Lecture Notes in Computer Science, Vol. 176, 1984, pp. 544-552. [MR: 783486] [Zbl: 0548.68039] [Google Scholar]
  16. 16. K. W. WAGNER, Maximum and Minimum Problems, and Some Closures of NP, Proc. 13th Intern Coll. Autom., Lang. and Progr., 1986 (to appear). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.