Free Access
Issue
RAIRO-Theor. Inf. Appl.
Volume 20, Number 3, 1986
Page(s) 211 - 219
DOI https://doi.org/10.1051/ita/1986200302111
Published online 01 February 2017
  1. 1. P. ERDÖS and Z. PALKA, Trees in Random Graphs, Discr. Math., Vol 46, 1983. [MR: 710885] [Zbl: 0535.05049] [Google Scholar]
  2. 2. J. FRIEDMAN, Constructing 0 (n log n) size monotone formulae for the k-th elementary symmetric polynomial of n boolean variables, Proc. 25th Symp. on Foundations of Computer Science, 1984. [Google Scholar]
  3. 3. M. KARONSKI and Z. PALKA, On the Size of a Maximal Induced Tree in a Random Graph, Math. Slovaca, Vol. 30, 1980. [EuDML: 32015] [MR: 587240] [Zbl: 0438.05028] [Google Scholar]
  4. 4. A. MARCHETTI-SPACCAMELA and M. PROTASI, The Largest Tree in a Random Graph, Theor. Comp. Sci., Vol. 23, 1983. [MR: 702012] [Zbl: 0512.68045] [Google Scholar]
  5. 5. M. PROTASI and M. TALAMO, A New Probabilistic Model for the Study of Algorithmic Properties of Random Graph Problems, Proc. Conf. on Foundations of Computation Theory, Borgholm, Lect. Notes in Comp. Sci., Vol. 158, 1983. [MR: 734734] [Zbl: 0549.68068] [Google Scholar]
  6. 6. M. PROTASI and M. TALAMO, A General Analysis of the Max-Independent Set and Related Problems on Random Graphs, Tech. Rep. 3/84, Dip. Matematica, Università dell'Aquila, 1984. [Google Scholar]
  7. 7. M. PROTASI and M. TALAMO, On the Maximum Size of Random Trees, Proc. X Coll. on Trees in Algebra and Programming, Berlin, Lect. Notes in Comp. Sci., Vol. 185, 1985. [Zbl: 0576.05014] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.