Free Access
Issue |
RAIRO. Inform. théor.
Volume 18, Number 3, 1984
|
|
---|---|---|
Page(s) | 225 - 239 | |
DOI | https://doi.org/10.1051/ita/1984180302251 | |
Published online | 01 February 2017 |
- 1. S. I. ADJAN, Defining Relations and Algorithmic Problems for Groups and Semigroups, Proc. Steklov Inst., vol. 85, 1966, Amer. Math. Soc. Transl., vol. 152, 1967. [MR: 218434] [Zbl: 0204.01702] [Google Scholar]
- 2. A. V. ANISIMOV et F. D. SEIFERT, Zur algebraischen Charakteristik der durch kontextfreie Sprachen definierten Gruppen, Elektronische Informations-verarbeitung und Kybernetik, vol. 11, 1975, p. 695-702. [MR: 422436] [Zbl: 0322.68047] [Google Scholar]
- 3. J. BEAUQUIER, Contribution à l'étude de la complexité structurelle des langages algébriques, Th. Sc. Math., Univ. Paris-VII, 1979. [Google Scholar]
- 4. L. BOASSON, Dérivations et réductions dans les grammaires algébriques, Proc. of the 7th I.C.A.L.P., Lecture Notes in Computer Science, vol. 85, 1980, p. 109-118. [MR: 588997] [Zbl: 0455.68041] [Google Scholar]
- 5. A. CLIFFORD et G. PRESTON, The Algebraic Theory of Semigroups, Amer. Math. Soc., vol. 1, 1961; vol. 2, 1967. [Zbl: 0111.03403] [Google Scholar]
- 6. Ch. FROUGNY, Une famille de langages algébriques congruentiels : les langages à non-terminaux séparés, Thèse 3e cycle, Univ. Paris-VII, 1980. [Google Scholar]
- 7. Ch. FROUGNY, J. SAKAROVITCH et E. VALKEMA, On the Hotz Group of a Context-Free Grammar, Acta Informatica, vol.18, 1982, p. 109-115. [MR: 688347] [Zbl: 0495.68066] [Google Scholar]
- 8. S. GINSBURG et M. HARRISON, Bracketed Context-Free Languages, Journal of Computer and System Sciences, vol. 1, 1967, p. 1-23. [MR: 235935] [Zbl: 0153.00802] [Google Scholar]
- 9. M. HARRISON, Introduction to Formal Language Theory, Addison Wesley, 1978. [MR: 526397] [Zbl: 0411.68058] [Google Scholar]
- 10. G. HOTZ, Eine neue Invariante für kontextfreie Sprachen, Theoret. Computer Sc., vol. 11, 1980, p. 107-116. [MR: 566697] [Zbl: 0447.68089] [Google Scholar]
- 11. G. HOTZ, Über die Darstellbarkeit des syntaktischen Monoides Kontextfreier Sprachen, R.A.I.R.O. Informatique Théorique, vol. 13, 1979, p. 337-345. [EuDML: 92108] [MR: 556956] [Zbl: 0428.68085] [Google Scholar]
- 12. R. C. LYNDON et P. E. SCHUPP, Combinatorial Group Theory, Springer, 1977. [MR: 577064] [Zbl: 0368.20023] [Google Scholar]
- 13. D. E. MULLER et P. E. SCHUPP, Pushdown Automata, Graphs, Ends, Second-Order logic, and reachability Problems, Proc. of the 13th Symposium on Theory of Computing, 1981, p. 46-54. [Google Scholar]
- 14. J. F. PERROT, Monoïdes syntactiques des langages algébriques, Acta Informatica, vol. 7, 1977, p. 399-413. [MR: 439971] [Zbl: 0326.68050] [Google Scholar]
- 15. D. J. ROSENKRANTZ, Matrix Equations and Normal Forms for Context-Free Grammars, Journal of the Association for Computing Machinery, vol. 14, 1967, p. 501-507. [MR: 234784] [Zbl: 0148.25102] [Google Scholar]
- 16. J. SAKAROVITCH, Sur les groupes infinis, considérés comme monoïdes syntaxiques de langages formels, Séminaire Dubreil 1975-1976, Lecture Notes 586, 1977, p. 168-179. [MR: 664095] [Zbl: 0395.68067] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.