Free Access
Issue
RAIRO. Inform. théor.
Volume 18, Number 3, 1984
Page(s) 191 - 208
DOI https://doi.org/10.1051/ita/1984180301911
Published online 01 February 2017
  1. 1.N. DERSHOWITZ, Orderings for Term Rewriting Systems, Proc. 20th Symposium on Foundations of Computer Science, 1979, p. 123-131, also in TCS 17-3, 1982 [MR: 648438] [Zbl: 0525.68054] [Google Scholar]
  2. 2.DONER, Trees Acceptors and Some of Their Applications, J. Computer System Science, vol. 4, 1970, p. 406-451. [MR: 287977] [Zbl: 0212.02901] [Google Scholar]
  3. 3.J. V. GUTTAG, The Specification and Application to Programming of Abstract Data Types, Ph. D. Thesis, University of Toronto, 1975. [Google Scholar]
  4. 4.G. HUET et J. M. HULLOT, Proofs by Induction in Equational Theories with Constructors, Proc. 21th Symposium on Foundation of Computer Science, 1980. [Zbl: 0532.68041] [Google Scholar]
  5. 5.G. HUET et D. S. LANKFORD, On the Uniform Halting Problem for Term Rewriting Systems, Rapport Laboria, n° 283, I.N.R.I.A., 1978. [Google Scholar]
  6. 6.G. HUET, D. C. OPPEN, Equations and Rewrite Rules: a Survey, in Formal Languages: Perspectives and Open Problems, R. BOOK, éd., Academic Press, 1980. [Google Scholar]
  7. 7.J. HSIANG et N. DERSHOWITZ, Rewrite Methods for Clausal and non Clausal Theorem Proving, Proc. l0th I.C.A.L.P., 1983. [Zbl: 0523.68080] [Google Scholar]
  8. 8. J. P. JOUANNAUD, C. KIRCHNER et H. KIRCHNER, Incremental Construction of Unification Algorithms in Equational Theories, Proc. 10th I.C.A.L.P., 1983. [MR: 727669] [Zbl: 0516.68067] [Google Scholar]
  9. 9. J. P. JOUANNAUD, P. LESCANNE et F. REING, Recursive Decomposition Ordering, in Formal Description of Programming Concepts 2, D. BJORNER, éd., North Holland, 1982. [Zbl: 0513.68026] [Google Scholar]
  10. 10. D. KNUTH et P. BENDIX, Simple word Problems in Universal Algebras, in Computational Problems in Abstract Algebra, J. LEECH, éd., Pergamon Press, 1970. [MR: 255472] [Zbl: 0188.04902] [Google Scholar]
  11. 11. KAMIN et J. J. LEVY, Attempts for Generalizing the Recursive Path Ordering, to be published. [Google Scholar]
  12. 12. J. B. KRUSKAL, Well Quasi Ordering, the Tree Theorem and Vazsonyi's conjecture, Trans. Amer. Math. Soc., vol. 95, 1960, p. 210-225. [MR: 111704] [Zbl: 0158.27002] [Google Scholar]
  13. 13. D. PLAISTED, A Recursively Defined Ordering for Proving Terminaison of Term Rewriting Systems, Report 78-943, University of Illinois, 1978. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.