Free Access
Issue
RAIRO. Inform. théor.
Volume 17, Number 2, 1983
Page(s) 137 - 161
DOI https://doi.org/10.1051/ita/1983170201371
Published online 01 February 2017
  1. Note: L.N.C.S., Lecture Notes in Computer Science; I.C.A.L.P., Int. Colloquium on Automata, Languages and Programming. [Google Scholar]
  2. 1. J. BACKUS, Can Programming be Liberated from the von Neumann Style? A Functional Style and lts Algebra of Programs, Comm. A.C.M., Vol. 21, No. 8, 1978, pp. 613-641. [MR: 520392] [Zbl: 0383.68013] [Google Scholar]
  3. 2. F. L. BAUER and H. WÖSSNER, Algorithmische Sprache und Programmentwicklung, Berlin-Heidelberg-New York, Springer, 1981. [Zbl: 0466.68006] [Google Scholar]
  4. 3. J. W. DE BAKKER, Least Fixed Points Revisited. In C. BÖHM, Ed., λ-Calculus and Computer Science Theory, Roma, I.N.C.S., Vol. 37, pp. 27-62, Berlin, Springer, 1975. [MR: 474942] [Zbl: 0328.68009] [Google Scholar]
  5. 4. J. A. BERGSTRA and J. V. TUCKER, Algebraic Specification of Computable and Semi-Computable Data Structures, Afdeling Informatica Amsterdam, IW115/79, 1979. [Zbl: 0419.68029] [Google Scholar]
  6. 5. G. BIRKHOFF and J. D. LIPSON, Heterogeneous Algebras, J. Comb. Theory, Vol. 8, 1970, pp.115-133. [MR: 250887] [Zbl: 0211.02003] [Google Scholar]
  7. 6. M. BROY, Transformation Parallel Ablaufender Programme, Dissertation, Technische Universitât München, Fakultät für Mathematik, 1980. [Zbl: 0461.68013] [Google Scholar]
  8. 7. M. BROY, W. DOSCH, H. PARTSCH, P. PEPPER and M. WIRSING, Existential Quantifiers in Abstract Data Types. In H.A. MAURER, Ed., Proc. of the Sixth I.C.A.L.P., Graz, I..N.C.S., Vol. 71, pp. 73-87, Berlin: Springer 1979. [MR: 573235] [Zbl: 0404.68026] [Google Scholar]
  9. 8. M. BROY and M. WIRSING, Programming Languages as Abstract Data Types. In M. DAUCHET, Ed., 5e Colloque de Lille sur les arbres en algèbre et en programmation, Lille, February 1980, pp. 160-177, Université de Lille, 1980. [Zbl: 0433.68014] [Google Scholar]
  10. 9. M. BROY and M. WIRSING, Partial-Recursive Functions and Abstract Data Types, Bulletin of the E.A.T.C.S., Vol. 11, June, 1980, pp. 34-41. [Google Scholar]
  11. 10. M. BROY and M. WIRSING, On the Algebraic Specification of Nondeterministic Programming Languages. In E.ASTESIANO and C.BÖHM, Eds., 6th Colloquium on Trees in Algebra and Programming, Genova, L..N.C.S., Vol. 112, pp. 162-179, Berlin, Springer, 1981. [MR: 623271] [Zbl: 0462.68063] [Google Scholar]
  12. 11 M. BROY and M. WIRSING, Partial Abstract Types, Acta Informatica, Vol. 18, 1982, pp. 47-64. [MR: 688344] [Zbl: 0494.68020] [Google Scholar]
  13. 12. M. BROY and M. WIRSING, On the Algebraic Specification of Finitary Infinite Communicating Processes. In D. BJORNER, Ed., I.F.LP. Working Conference on Formal Description of Programming Concepts II, Garmisch 1982 (to appear). [Zbl: 0512.68021] [Google Scholar]
  14. 13 M. BROY, C. PAIR and M. WIRSING, A Systematic Study of Models of Abstract Data Types, Centre de Recherche en Informatique de Nancy, Report 81-R-042, 1981. [Zbl: 0552.68010] [Google Scholar]
  15. 14 M. BROY, P. PEPPER and M. WIRSING, On Relations Between Programs. In B. ROBINET, Ed., 4th International Symposium on Programming, Paris, April, 22nd-24th 1980, L.N.C.S., Vol. 83, pp. 59-78, Berlin, Springer. [Zbl: 0435.68017] [Google Scholar]
  16. 15. C. C. CHANG and H. J. KEISLER, Model Theory, Studies in Logic and the Foundations of Mathematics, Vol. 73, Amsterdam, North-Holland, 1973. [MR: 409165] [Zbl: 0276.02032] [Google Scholar]
  17. 16. B. COURCELLE and M. NIVAT, The Algebraic Semantics of Program Schemas. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Comp. Science, Zakopane, L.N.C.S., Vol. 64, pp. 16-30, Berlin, Springer, 1978. [MR: 519827] [Zbl: 0384.68016] [Google Scholar]
  18. 17. M. C. GAUDEL, Génération et preuve de compilateurs basées sur une sémantique formelle des langages de programmation, Thèse d'État, Nancy, March, 1980. [Google Scholar]
  19. 18. G. GOGUEN, J. W. THATCHER and E. G. WAGNER, An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types. In R. T. YEH, Ed., Current trends in programming methodology, Vol. 4, Data Structuring, pp. 80-149, N.J., Prentice Hall, 1978. [Google Scholar]
  20. 19. G. GRÄTZER, Universal Algebra, Princeton, Van Nostrand, 1968. [MR: 248066] [Zbl: 0182.34201] [Google Scholar]
  21. 20. J. V. GUTTAG, The Specification and Application to Progamming of Abstract Data Types, Ph. D. Th., Univ. of Toronto, Dept. of Comp. Sc., Rep. CSRG-59, 1975. [Google Scholar]
  22. 21. P. HITCHCOCK and D. PARK, Induction Rules and Termination Proof. In M. NIVAT, Ed., Proc. of the first I.C.A.L.P., I.R.I.A., pp. 225-251, Amsterdam, North-Holland, 1973. [MR: 495103] [Zbl: 0387.68011] [Google Scholar]
  23. 22. S. MCLANE, Categories for the Working Mathematician, Berlin: Springer, 1971. [MR: 354798] [Zbl: 0232.18001] [Google Scholar]
  24. 23. Z. MANNA, Mathematical Theory of Computation,New York, McGram Hill, 1974 [MR: 400771] [Zbl: 0353.68066] [Google Scholar]
  25. 24. Z. MANNA and A. SHAMIR, The Theoretical Aspects of the Optimal Fixed Point, S.I.A.M. J. Comp., Vol. 5, No. 3, 1978, pp. 414-426. [MR: 440995] [Zbl: 0358.68017] [Google Scholar]
  26. 25. R. MILNER, Fully Abstract Models of Types -Calculi, Vol. 4, 1977, pp. 1-22. [MR: 498061] [Zbl: 0386.03006] [Google Scholar]
  27. 26. C. PAIR, Types abstraits et sémantique algébrique des langages de programmation, Centre de Recherche en Informatique de Nancy, Rapport 80-R-011, 1980. [Google Scholar]
  28. 27. P. PEPPER, A Study on Transformational Semantics. In F. L. BAUER and M. BROY, Eds., Proc. International Summer School on Program Construction, Marktoberdorf, 1978, L.N.C.S., Vol. 69, Berlin, Springer, 1979, pp. 322-405. [MR: 583152] [Zbl: 0408.68074] [Google Scholar]
  29. 28. W. DE ROEVER, Recursion and Parameter Mechanism: an Axiomatic Approach. In J. LOECKX, Ed., Proc. of the second I.C.A.L.P., Saarbrücken, L.N.C.S., Vol. 14, Berlin, Springer, 1975, pp. 34-65. [MR: 428768] [Zbl: 0302.68019] [Google Scholar]
  30. 29. H. Jr. ROGERS, Theory of Recursive Functions and Effective Computability, New York, McGraw-Hill Book Company, 1967. [MR: 224462] [Zbl: 0183.01401] [Google Scholar]
  31. 30. J. R. SHOENFIELD, Mathematical Logic, Reading (Massachusetts): Addison-Wesley, 1969. [MR: 225631] [Zbl: 0155.01102] [Google Scholar]
  32. 31. E. G. WAGNER, J. W. THATCHER and J. B. WRIGHT, Programming Languages as Mathematical Objects. In J. WINKOWSKI, Ed., Proc. Math. Foundations of Computer Science, Zakopane, L.N.C.S., Vol. 64, Berlin, Springer, 1978, pp. 84-101. [MR: 519830] [Zbl: 0394.68008] [Google Scholar]
  33. 32. M. WAND, First-Order Identities as a Defining Language, Indiana University, Comp. Science Department, Technical Report No. 29, 1977. [Zbl: 0424.68022] [Google Scholar]
  34. 33. M. WIRSING, P. PEPPER, H. PARTSCH, W. DOSCH and M. BROY, On Hierarchies of Abstract Types, Acta Informatica (to appear). Preliminary version: Technische Universität München, Institut für Informatik, TUM-I 8007. [Zbl: 0506.68024] [MR: 720236] [Google Scholar]
  35. 34. M. WIRSING and M. BROY, Abstract Data Types as Lattices of Finitely Generated Models. In P. DEMBINSKI, Ed., Proc. Math. Foundations of Computer Science, Rydzyna, L.N.C.S., Vol. 88, Berlin, Springer, 1980, pp. 673-685. [MR: 744200] [Zbl: 0441.68014] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.