Free Access
RAIRO. Inform. théor.
Volume 16, Number 3, 1982
Page(s) 263 - 292
Published online 01 February 2017
  1. [AHU 74] A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. [MR: 413592] [Zbl: 0326.68005] [Google Scholar]
  2. [Be 76] C. BERGE, Graphs and Hypergraphs, North Holland, 1976. [MR: 384579] [Zbl: 0311.05101] [Google Scholar]
  3. [Bl 80] P. BLONIARZ, A Shortest Path Algorithm with Expected Time O (n2 log n log * n), Proc. of the 12th A.C.M. Symp. on Theory of Computing, Los Angeles, 1980. [Google Scholar]
  4. [Br 74] P. BRUCKER, Theory of Matrix Algorithms, Math. Systems in Economics, 13, Anton Hain, 1974. [MR: 384339] [Zbl: 0292.90049] [Google Scholar]
  5. [Ca 79] B. A. CARRÉ, Graphs and Networks, Clarendon Press, Oxford, 1979. [MR: 556411] [Zbl: 0455.05001] [Google Scholar]
  6. [DP 80] N. DEO and C. PANG, Shortest Path Algorithms: Taxonomy and Annotation, Washington State University, CS-80-057, 1980. [Google Scholar]
  7. [Ei 74] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press, 1974. [MR: 530382] [Zbl: 0317.94045] [Google Scholar]
  8. [FM 71] M. J. FISCHER and A. R. MEYER, Boolean Matrix Multiplication and Transitive Closure, I.E.E.E. 12th Ann. Symp. on Switching and Automata Theory, 1971. [Google Scholar]
  9. [Fr 76] M. L. FREDMAN, New Bounds on the Complexity of the Shortest Path Problem, S.I.A.M. J. Comp., Vol. 5, 1976. [MR: 404050] [Zbl: 0326.68027] [Google Scholar]
  10. [IN 72] M. IRI and M. NAKAMORI, Path Sets, Operator Semigroups and Shortest Path Algorithms on a Network, R.A.A.G, Research Notes, Third Series, No. 185, Univ. Tokyo, 1972. [Zbl: 0245.05106] [MR: 335175] [Google Scholar]
  11. [Jo 73] D. B. JOHNSON, Algorithms for Shortest Paths, TR 73-169, Cornell University, 1973. [MR: 2623424] [Google Scholar]
  12. [Jo 77] D. B. JOHNSON, Efficient Algorithms for Shortest Paths in Networks, J. A.C.M., Vol. 24, 1977. [MR: 449710] [Zbl: 0343.68028] [Google Scholar]
  13. [Ke 70] L. R. KERR, The Effect of Algebraic Structures on the Computational Complexity of Matrix Multiplication, Ph.D. Thesis, Cornell, 1970. [Google Scholar]
  14. [Le 77] D. J. LEHMANN, Algebraic Structures for Transitive Closure, Theoretical Computer Science, Vol. 4, 1977. [MR: 660291] [Zbl: 0358.68061] [Google Scholar]
  15. [LM 80] C. LAUTEMANN and B. MAHR, A Note on the Complexity of Path Problems, unpublished, 1980. [Google Scholar]
  16. [Ma 79] B. MAHR, Algebraische Komplexität des Allgemeinen Wegeproblems in Graphen, Techn. Univ. Berlin, Fachbereich Informatik, Vol. 79-14, 1979(Thesis). [Zbl: 0449.68027] [Google Scholar]
  17. [Ma 80] B. MAHR, A Birds-Eye View to Path Problems, LNCS, Vol. 100, Springer, Ed. Noltemeier, 1981. [MR: 621510] [Zbl: 0454.68070] [Google Scholar]
  18. [Ma 82] B. MAHR, Semirings and Transitive Closure, Techn. Univ. Berlin, Fachbereich Informatik, Vol. 82-5, 1982. [Google Scholar]
  19. [MS 81] B. MAHR and D. SIEFKES, Relating Uniform and Nonuniform Models of Computation, Informatik Fachberichte, Springer, Vol. 50, Braner, Ed., 1981. [MR: 659089] [Zbl: 0484.68035] [Google Scholar]
  20. [Me 77] K. MEHLHORN, Effiziente Algorithmen, Teubner, 1977. [MR: 495158] [Zbl: 0357.68041] [Google Scholar]
  21. [MU 68] J. D. MURCHLAND, Shortest Distances by a Fixed Matrix Method, Report LBS-TNT-64, London, Graduate School of Business Studies, 1968 (see [Br 74]). [Google Scholar]
  22. [Pa 74] M. S. PATERSON, Complexity of Matrix Algorithms, handwritten copy, May 1974. [MR: 395322] [Google Scholar]
  23. [PR 75] V. R. PRATT, The Power of Negative Thinking in Multiplying, Boolean Matrices, S.I.A.M. J. Comp., Vol. 4, 1975. [MR: 403831] [Zbl: 0318.94040] [Google Scholar]
  24. [Ro 80] F. ROMANI, Shortest Path Problems is not Harder than Matrix Multiplication, Information Processing Letters, Vol. 11, No. 3, 1980. [MR: 593406] [Zbl: 0454.68069] [Google Scholar]
  25. [SP 73] P. M. SPIRA and A. PAN, On Finding and Updating Shortest Paths and Spanning Trees, 14th Ann. Symp. on Switching and Automata Theroy, 1973. [MR: 449017] [Google Scholar]
  26. [TA 75] R. E. TARJAN, Solving Path Problems on Directed Graphs, Comp. Sc. Dept. Univ. Stanford, 1975. [Google Scholar]
  27. [Wa 76] R. A. WAGNER, A Shortest Path Algorithm for Edge Sparse Graphs, J. A.C.M., Vol. 23, 1976. [MR: 429076] [Zbl: 0327.05120] [Google Scholar]
  28. [Zi 81] U. ZIMMERMANN, Linear and Combinatorial Optimization in Ordered Algebraic Structures, 1981 (to appear). [MR: 609751] [Zbl: 0466.90045] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.