Free Access
Issue
RAIRO. Inform. théor.
Volume 16, Number 3, 1982
Page(s) 263 - 292
DOI https://doi.org/10.1051/ita/1982160302631
Published online 01 February 2017
  1. [AHU 74] A. V. AHO, J. E. HOPCROFT and J. D. ULLMAN, Design and Analysis of Computer Algorithms, Addison-Wesley, 1974. [MR: 413592] [Zbl: 0326.68005]
  2. [Be 76] C. BERGE, Graphs and Hypergraphs, North Holland, 1976. [MR: 384579] [Zbl: 0311.05101]
  3. [Bl 80] P. BLONIARZ, A Shortest Path Algorithm with Expected Time O (n2 log n log * n), Proc. of the 12th A.C.M. Symp. on Theory of Computing, Los Angeles, 1980.
  4. [Br 74] P. BRUCKER, Theory of Matrix Algorithms, Math. Systems in Economics, 13, Anton Hain, 1974. [MR: 384339] [Zbl: 0292.90049]
  5. [Ca 79] B. A. CARRÉ, Graphs and Networks, Clarendon Press, Oxford, 1979. [MR: 556411] [Zbl: 0455.05001]
  6. [DP 80] N. DEO and C. PANG, Shortest Path Algorithms: Taxonomy and Annotation, Washington State University, CS-80-057, 1980.
  7. [Ei 74] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press, 1974. [MR: 530382] [Zbl: 0317.94045]
  8. [FM 71] M. J. FISCHER and A. R. MEYER, Boolean Matrix Multiplication and Transitive Closure, I.E.E.E. 12th Ann. Symp. on Switching and Automata Theory, 1971.
  9. [Fr 76] M. L. FREDMAN, New Bounds on the Complexity of the Shortest Path Problem, S.I.A.M. J. Comp., Vol. 5, 1976. [MR: 404050] [Zbl: 0326.68027]
  10. [IN 72] M. IRI and M. NAKAMORI, Path Sets, Operator Semigroups and Shortest Path Algorithms on a Network, R.A.A.G, Research Notes, Third Series, No. 185, Univ. Tokyo, 1972. [Zbl: 0245.05106] [MR: 335175]
  11. [Jo 73] D. B. JOHNSON, Algorithms for Shortest Paths, TR 73-169, Cornell University, 1973. [MR: 2623424]
  12. [Jo 77] D. B. JOHNSON, Efficient Algorithms for Shortest Paths in Networks, J. A.C.M., Vol. 24, 1977. [MR: 449710] [Zbl: 0343.68028]
  13. [Ke 70] L. R. KERR, The Effect of Algebraic Structures on the Computational Complexity of Matrix Multiplication, Ph.D. Thesis, Cornell, 1970.
  14. [Le 77] D. J. LEHMANN, Algebraic Structures for Transitive Closure, Theoretical Computer Science, Vol. 4, 1977. [MR: 660291] [Zbl: 0358.68061]
  15. [LM 80] C. LAUTEMANN and B. MAHR, A Note on the Complexity of Path Problems, unpublished, 1980.
  16. [Ma 79] B. MAHR, Algebraische Komplexität des Allgemeinen Wegeproblems in Graphen, Techn. Univ. Berlin, Fachbereich Informatik, Vol. 79-14, 1979(Thesis). [Zbl: 0449.68027]
  17. [Ma 80] B. MAHR, A Birds-Eye View to Path Problems, LNCS, Vol. 100, Springer, Ed. Noltemeier, 1981. [MR: 621510] [Zbl: 0454.68070]
  18. [Ma 82] B. MAHR, Semirings and Transitive Closure, Techn. Univ. Berlin, Fachbereich Informatik, Vol. 82-5, 1982.
  19. [MS 81] B. MAHR and D. SIEFKES, Relating Uniform and Nonuniform Models of Computation, Informatik Fachberichte, Springer, Vol. 50, Braner, Ed., 1981. [MR: 659089] [Zbl: 0484.68035]
  20. [Me 77] K. MEHLHORN, Effiziente Algorithmen, Teubner, 1977. [MR: 495158] [Zbl: 0357.68041]
  21. [MU 68] J. D. MURCHLAND, Shortest Distances by a Fixed Matrix Method, Report LBS-TNT-64, London, Graduate School of Business Studies, 1968 (see [Br 74]).
  22. [Pa 74] M. S. PATERSON, Complexity of Matrix Algorithms, handwritten copy, May 1974. [MR: 395322]
  23. [PR 75] V. R. PRATT, The Power of Negative Thinking in Multiplying, Boolean Matrices, S.I.A.M. J. Comp., Vol. 4, 1975. [MR: 403831] [Zbl: 0318.94040]
  24. [Ro 80] F. ROMANI, Shortest Path Problems is not Harder than Matrix Multiplication, Information Processing Letters, Vol. 11, No. 3, 1980. [MR: 593406] [Zbl: 0454.68069]
  25. [SP 73] P. M. SPIRA and A. PAN, On Finding and Updating Shortest Paths and Spanning Trees, 14th Ann. Symp. on Switching and Automata Theroy, 1973. [MR: 449017]
  26. [TA 75] R. E. TARJAN, Solving Path Problems on Directed Graphs, Comp. Sc. Dept. Univ. Stanford, 1975.
  27. [Wa 76] R. A. WAGNER, A Shortest Path Algorithm for Edge Sparse Graphs, J. A.C.M., Vol. 23, 1976. [MR: 429076] [Zbl: 0327.05120]
  28. [Zi 81] U. ZIMMERMANN, Linear and Combinatorial Optimization in Ordered Algebraic Structures, 1981 (to appear). [MR: 609751] [Zbl: 0466.90045]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.