Free Access
RAIRO. Inform. théor.
Volume 14, Number 3, 1980
Page(s) 247 - 278
Published online 01 February 2017
  1. 1. J. ARSAC La construction de programmes structurés, Dunod, Paris, 1977. [Zbl: 0451.68014] [Google Scholar]
  2. 2. M. A. ARBIB et S. ALAGIC, Proof Rules for « Gotos », Acta Informatica, vol. 11, 1979, p. 139-148. [Google Scholar]
  3. 3. L. BANAKOWSKI, A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA et A. SALWICKI, An Introduction to Algorithmic Logic. Mathematical Investigations in the Theory of Programs, in Banach Center Publications V. 2 Mathematical Foundations of Computer Science, P. W. N. Polish Scientific Publishers, 1977, Warsaw, p. 7-99. [EuDML: 208573] [Zbl: 0358.68035] [Google Scholar]
  4. 4. J. W. DE BAKKER, Recursive Programs as Predicate Transformers, in Formal descriptions of programing concepts, E. J. NEUHOLD, éd., North-Holland, 1978, p. 165-202. [MR: 537905] [Zbl: 0392.68006] [Google Scholar]
  5. 5. CHANG KEISLER, Model Theory, N.-H. Amsterdam. [Zbl: 0697.03022] [Google Scholar]
  6. 6. S. A. COOK, Soundness and Completeness for an Axiom System for Program Verification, J.S.I.A.M. on Computing, vol. 7, 1978, p. 70-90. [MR: 495086] [Zbl: 0374.68009] [Google Scholar]
  7. 7. M. CLINT et C. A. R. HOARE, Program Proving: Jumps and Functions, Acta Informatica, vol. 1, 1972, p. 214-224. [Zbl: 0229.68003] [Google Scholar]
  8. 8. B. COURCELLE et M. NIVAT, The algebraic Semantics of Recursive Program Schemes, in Proc. 7th Math. Found of Comput. Sc. Symposium, 1978, Lecture Notes in Comput. Sc., vol. 62, p. 16-30. [MR: 519827] [Zbl: 0384.68016] [Google Scholar]
  9. 9. G. COUSINEAU Les arbres à feuilles indicées : un cadre algébrique de définition des structures de contrôle, Thèse d'État, Paris, 1977. [Google Scholar]
  10. 10. G. COUSINEAU, An algebraic definition of control structures, L.I.T.P. Report, 78-27 (à paraître dans Theor. Comp. Sci.). [Zbl: 0456.68015] [Google Scholar]
  11. 11. G. COUSINEAU, La programmation en EXEL, 1re partie; Revue Technique THOMSON-CSF, vol. 10, n°2, 1978, p. 209-234. [Google Scholar]
  12. 12. G. COUSINEAU, La Programmation en EXEL, 2e partie, Revue Technique THOMSON-CSF, vol. 11, n° 1, 1979, p. 13-35. [Google Scholar]
  13. 13. G. COUSINEAU et P. ENJALBERT, Program Equivalence and Provability, in Proc. 8th Math. Found. of Comput. Sc. Symposium, 1979, Lecture Notes in Comput. Sc., n° 74, p. 237-245. [Zbl: 0404.68014] [Google Scholar]
  14. 14. E. W. DIJSKRA, Guarded Commands, Non Determinacy and Formal Derivations of Programs, Corn. Assoc. comput. Math., vol. 18, n° 8, 1975, p. 453-457. [MR: 383808] [Zbl: 0308.68017] [Google Scholar]
  15. 15. DONER, Tree Acceptors and Some of their Applications, J. Comput. System Sci., vol. 4, 1970, p. 406-451. [MR: 287977] [Zbl: 0212.02901] [Google Scholar]
  16. 16. D. HAREL, Dynamic Logic, Springer Lecture Notes in Comput. Sc., vol. 68, 1979. [MR: 567695] [Zbl: 0403.03024] [Google Scholar]
  17. 17. D. HAREL, A. MEYER et V. R. PRATT, Computability and Completeness in Logics of Programs, Proc. 9th Annual A.C.M. Symposium on Theory of Computing, 1977, p. 261-268. [MR: 495101] [Google Scholar]
  18. 18. C. A. R. HOARE, An Axiomatic Basis for Computer Programing, Com. Assoc. Comput. Math., vol. 12, 1969, p. 576-580. [Zbl: 0179.23105] [Google Scholar]
  19. 19. C. A. R. HOARE et P. E. LAUER, Consistent and Complementary Formal Theories of the Semantics of Programming Languages, Acta Informatica, vol. 3, 1974, p. 135-153. [MR: 464644] [Zbl: 0264.68006] [Google Scholar]
  20. 20. S. IGARASHI, R. L. LONDON et D. C. LUCKMAN, Automatic Verification I..., Acta Informatica, vol. 4, 1975, p. 149-181. [Google Scholar]
  21. 21. M. NIVAT, Chartes, arbres, Programmes itératifs, I.R.I.A.-S.E.S.O.R.I., Journées d'étude : Synthèse, Manipulation et transformation des programmes, 1978, p. 165-187. [Google Scholar]
  22. 22. L. NOLIN et G. RUGGIU, A Formalization of EXEL, Assoc. Comput. Math. SIGACT-SIGPLAN Symposium on the Principle of Programming Languages, Boston, 1973. [Zbl: 0308.68011] [Google Scholar]
  23. 23. R. PARIKH, Second Order Process Logic, 19th I.E.E.E. Symposium on Found. of Computer Science, 1978. [Google Scholar]
  24. 24. V. R. PRATT, Semantical Consideration on Floyd-Hoare Logic, 17th I.E.E.E. Symposium on Foundation of Computer Science, 1976, p. 109-121. [MR: 502164] [Google Scholar]
  25. 25. G. RUGGIU, De l'organigramme à la formule, Thèse d'État, Paris, 1973. [Google Scholar]
  26. 26. M. WAND, A new Incompleteness Result for Hoare's System, J. Assoc. Comput Mach., vol. 25, 1978, p. 168-175. [MR: 474964] [Zbl: 0364.68008] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.