Free Access
Issue
RAIRO. Inform. théor.
Volume 13, Number 4, 1979
Page(s) 363 - 378
DOI https://doi.org/10.1051/ita/1979130403631
Published online 01 February 2017
  1. 1. A. V. AHO et J. D. ULLMAN, The Theory of Parsing, Translation and Compiling, vol. 1, Prentice Hall, 1972. [Zbl: 0264.68032] [MR: 408321] [Google Scholar]
  2. 2. J. M. AUTEBERT, Opérations de cylindre et applications séquentielles gauches inverses, Acta Informatica, vol. 11, 1979, p. 241-258. [Zbl: 0388.68076] [Google Scholar]
  3. 3. J. M. AUTEBERT, L. BOASSON et G. COUSINEAU, A Note on 1-Locally-Linear Languages, Information and Control, vol. 37, 1978, p. 1-4. [MR: 483732] [Zbl: 0377.68045] [Google Scholar]
  4. 4. Y. BAR-HILLEL, M. PERLES et E. SHAMIR, On Formal Properties of Simple Phrase Structure Grammars, Z. Phonetik., Sprach. Kommunikation Forsch., vol. 14, 1961, p. 143-172. [MR: 151376] [Zbl: 0106.34501] [Google Scholar]
  5. 5. J. BEAUQUIER, Générateurs algébriques et systèmes de paires itérantes, Theoretical Computer Sc., vol. 8, 1979, p. 293-323. [MR: 532474] [Zbl: 0408.68071] [Google Scholar]
  6. 6. J. BEAUQUIER, A Remark About the Syntactic Lemma, soumis à Mathematical Systems Theory. [Google Scholar]
  7. 7. L. BOASSON, Un critère de rationalité des langages algébriques. In Automata, Programming and Languages, M. NIVAT, éd., North Holland, 1972, p. 359-365. [MR: 368487] [Zbl: 0263.68038] [Google Scholar]
  8. 8. L. BOASSON, Two Iteration Theorems for Some Families of Languages, J. Comput. System Sc., vol. 7, 1973, p. 583-596. [MR: 386352] [Zbl: 0298.68053] [Google Scholar]
  9. 9. L. BOASSON, Langages algébriques, paires itérantes et transductions rationnelles, Theoretical Computer Sc., vol. 2, 1976, p. 209-223. [MR: 441012] [Zbl: 0378.68037] [Google Scholar]
  10. 10. L. BOASSON, B. COURCELLE et M. NIVAT, A New Complexity Measure for Languages, in A Conference on Theoretical Computer Science, Waterloo, 1977, p. 130-138. [MR: 495182] [Zbl: 0431.68077] [Google Scholar]
  11. 11. L. BOASSON, J. P. CRESTIN et M. NIVAT, Familles de langages translatables et fermées par crochet, Acta Informatica, vol. 2, 1973, p. 383-393. [MR: 334584] [Zbl: 0311.68047] [Google Scholar]
  12. 12. L. BOASSON et M. NIVAT, Sur diverses familles de langages fermées par transductions rationnelles, Acta Informatica, vol. 2, 1973, p. 180-188. [MR: 331873] [Zbl: 0242.68037] [Google Scholar]
  13. 13. L. BOASSON et M. NIVAT, Le cylindre des langages linéaires, Mathematical Systems Theory, vol. 11, 1977, p. 147-155. [MR: 455561] [Zbl: 0352.68087] [Google Scholar]
  14. 14. L. BOASSON et S. HORVATH, On Languages Satisfying Ogden's Lemma, R.A.I.R.O., Informatique Théorique, vol. 12, 1978, p. 201-202. [EuDML: 92076] [MR: 510637] [Zbl: 0387.68054] [Google Scholar]
  15. 15. R. V. BOOK et S. A. GREIBACH, Quasi Realtime Languages, Mathematical Systems Theory, vol. 4, 1970, p. 97-111. [MR: 276019] [Zbl: 0188.33102] [Google Scholar]
  16. 16. R. V. BOOK, M. NIVAT et M. PATERSON, Reversal Bounded Acceptors and Intersection of Linear Languages, S.I.A.M. J. Comput., vol. 3, 1974, p. 283-297. [MR: 433992] [Zbl: 0292.68023] [Google Scholar]
  17. 17. W. J. CHANDLER, Abstract Families of Deterministic Languages, Proceedings du 1er A.C.M. Symposium of Theory on Computing, Marina del Rey, 1969, p. 21-30. [Zbl: 1282.68153] [Google Scholar]
  18. 18. N. CHOMSKY, Context-Free Grammars and Push-Down Storage, M.I.T. Res. Lab. Electron. Quart. Prog. Rep., vol. 65, 1962. [Google Scholar]
  19. 19. N. CHOMSKY et M. P. SCHÜTZENBERGER, The Algebraic Theory of Context-Free Languages, in Computer Programming and Formal Systems, North Holland, 1963, p. 118-161. [MR: 152391] [Zbl: 0148.00804] [Google Scholar]
  20. 20. S. EILENBERG, Communication au congrès international des mathématiciens, Nice, 1970. [Google Scholar]
  21. 21. S. EILENBERG, Automata, Languages and Machines, vol. A, Academic Press, New York,, 1974. [MR: 530382] [Zbl: 0317.94045] [Google Scholar]
  22. 22. C. C. ELGOT et J. F. MEZEI, On Relations Defined by Generalized Finite Automata, I.B.M. J. Res. Dev., vol. 9, 1962, p. 47-68. [MR: 216903] [Zbl: 0135.00704] [Google Scholar]
  23. 23. R. J. EVEY, The Theory and Application of Push-Down Store Machines, Mathematical Linguistics and Automatic Translation, Harvard University, Computation Lab. Rep., N.S.F. 10, mai 1963. [Zbl: 0196.52501] [Google Scholar]
  24. 24. P. C. FISCHER, A. R. MEYER et A. L. ROSENBERG, Counter Machines and Counter Languages, Mathematical Systems Theory, vol. 2, 1968, p. 265-283. [MR: 235932] [Zbl: 0165.32002] [Google Scholar]
  25. 25. R. W. FLOYD, On Ambiguity in Phrase-Structure Languages, Comm. Assoc. Gomput. Mach., vol. 5, 1962, p. 526-534. [Zbl: 0227.68037] [Google Scholar]
  26. 26. S. GINSBURG, Algebraic and Automata-Theoretic Properties of Formal Languages, North Holland, 1975. [MR: 443446] [Zbl: 0325.68002] [Google Scholar]
  27. 27. S. GINSBURG, J. GOLDSTINE et S. A. GREIBACH, Uniformly Erasable AFL, J. Comput. System Sc., vol. 10, 1975, p. 165-182. [MR: 391600] [Zbl: 0325.68042] [Google Scholar]
  28. 28. S. GINSBURG, J. GOLDSTINE et S. A. GREIBACH, Some Uniformly Erasable Families of Languages, Theoretical Computer Science, vol. 2, 1976, p. 29-44. [MR: 411254] [Zbl: 0343.68033] [Google Scholar]
  29. 29. S. GINSBURG et S. A. GREIBACH, Deterministic Context Free Languages, Information and Control, vol. 9, 1966, p. 620-648. [MR: 207486] [Zbl: 0145.00802] [Google Scholar]
  30. 30. S. GINSBURG et S. A. GREIBACH, Abstract Families of Languages, in Memoirs of the Amer. Math. Soc., vol. 87, 1969, p. 1-32. [Zbl: 0194.31402] [MR: 297491] [Google Scholar]
  31. 31. S. GINSBURG et E. H. SPANIER, Derivation-Bounded Languages, J. Comp. Syst. Sc., vol. 2, 1968, p. 228-250. [MR: 241201] [Zbl: 0176.16703] [Google Scholar]
  32. 32. A. GINZBURG, Algebraic Theory of Automata, Academic Press, New York, 1968. [MR: 242679] [Zbl: 0195.02501] [Google Scholar]
  33. 33. J. GOLDSTINE, Substitution and Bounded Languages, J. Comput. System Sc, vol. 6, 1972, p. 9-29. [MR: 309367] [Zbl: 0232.68030] [Google Scholar]
  34. 34. S. A. GREIBACH, Chains of Full AFL's, Mathematical Systems Theory, vol. 4, 1970, p. 231-242. [MR: 329324] [Zbl: 0203.30102] [Google Scholar]
  35. 35. S. A. GREIBACH, The Hardest Context Free Language, S.I.A.M. J. Comput., vol. 2, 1973, p. 304-310. [MR: 334591] [Zbl: 0278.68073] [Google Scholar]
  36. 36. S. A. GREIBACH, Jump PDA's and Hierarchies of Deterministic Context-Free Languages, S.I.A.M. J. Comput., vol. 3, 1974, p. 111-127. [MR: 371155] [Zbl: 0288.68031] [Google Scholar]
  37. 37. I. HAVEL et M. HARRISON, Strict Deterministic Grammars, J. Comput. System Sc., vol. 7, 1973, p. 237-277. [MR: 319415] [Zbl: 0261.68036] [Google Scholar]
  38. 38. J. E. HOPCROFT et A. J. KORENJAK, Simple Deterministic Languages, I.E.E.E. Conf. Rec. 7th Ann. Symp. Switching and Automata Theory, 1966, p. 36-46. [Google Scholar]
  39. 39. S. HORVÁTH, The Family of Languages Satisfying Bar Hillel's Lemma, R.A.I.R.O.-Informatique théorique, vol. 12, 1978, p. 192-200. [EuDML: 92075] [Zbl: 0387.68053] [Google Scholar]
  40. 40. D. E. KNUTH, A Characterisation of Parenthesis Languages, Information and Control, vol. 11, 1967, p. 269-289. [Zbl: 0196.01703] [Google Scholar]
  41. 41. P. LANDWEBER, Three Theorems on Phrase-Structure Grammars of Type 1, Information and Control, vol. 6, 1963. [Zbl: 0116.11702] [Google Scholar]
  42. 42. M. LATTEUX, Langages commutatifs, Thèse Sc. Math, Université Lille-I, 1978. [Google Scholar]
  43. 43. R. MACNAUGTHON, Parenthesis Grammars, J. Assoc. Comput. Mach., vol. 14, 1967, p. 490-500. [Zbl: 0168.01206] [Google Scholar]
  44. 44. M. NIVAT, Transductions des langages de Chomsky, Thèse Sc. Math., Paris, 1967. [MR: 238633] [Zbl: 0313.68065] [Google Scholar]
  45. 45. W. OGDEN, A Helpful Result for Proving Inherent Ambiguity, Mathematical Systems Theory, vol. 2, 1967, p. 191-194. [MR: 233645] [Zbl: 0175.27802] [Google Scholar]
  46. 46. R. J. PARIKH, On Context-Free Languages, J. Assoc Comput. Mach., vol, 13, 1968, p. 570-580. [MR: 209093] [Zbl: 0154.25801] [Google Scholar]
  47. 47. J. F. PERROT, Introduction aux monoïdes syntactiques des langages algébriques, in Langages Algébriques, J. P. CRESTIN et M. NIVAT, éds., 1973, p. 167-222. [MR: 519795] [Zbl: 0392.20047] [Google Scholar]
  48. 48. A. SALOMAA, Formal Languages, Academic Press, New York, 1973. [MR: 438755] [Zbl: 0262.68025] [Google Scholar]
  49. 49. M. P. SCHÜTZENBERGER, Finite Counting Automata, Information and Control, vol. 5, 1962, p. 91-107. [MR: 154774] [Zbl: 0118.12506] [Google Scholar]
  50. 50. M. P. SCHÜTZENBERGER, Sur les relations rationnelles entre monoïdes libres, Theoretical Computer Sc., vol. 3, 1976, p. 243-259. [MR: 445927] [Zbl: 0358.68129] [Google Scholar]
  51. 51. E. SHAMIR, A Representation Theorem for Algebraic and Context Free Power Series in Non-Commuting Variables, Information and Control, vol. 11, 1967, p. 239-254. [MR: 228297] [Zbl: 0165.02302] [Google Scholar]
  52. 52. R. E. STEARNS, Regularity Test for Push-Down Machines, Information and Control, vol. 11, 1967, p. 323-340. [Zbl: 0155.01901] [Google Scholar]
  53. 53. I. H. SUDBOROUGH, Note on Tape-Bounded Complexity Classes and Linear Context-Free Languages, J. Assoc. Comput. Mach., vol. 22, 1975, p. 499-500. [MR: 378496] [Zbl: 0318.68048] [Google Scholar]
  54. 54. L. VALIANT, Regularity and Related Problems for Deterministic Push-Down Automata, J. Assoc. Comput. Mach., vol. 22, 1975, p. 1-10. [MR: 690083] [Zbl: 0293.68046] [Google Scholar]
  55. 55. L. VALIANT, General Context-Free Recognition in Less than Cubic Time, J. Comput. System Sc., vol. 10, 1975, p. 308-315. [MR: 428796] [Zbl: 0312.68042] [Google Scholar]
  56. 56. A. P. J. VAN DER WALT Locally-Linear Families of Languages, Information and Control, vol. 32, 1976, p. 27-32. [MR: 411265] [Zbl: 0336.68031] [Google Scholar]
  57. 57. N. K. YNTEMA, Inclusion Relations Among Families of Context-Free Languages, Information and Control, vol. 10, 1967, p. 572-597. [Zbl: 0207.31405] [Google Scholar]
  58. 58. A. B. CREMERS et S. GINSBURG, Context Free Grammars Forms, in Automata, Languages and programming, 2nd I.C.A.L.P., Saarbrücken, 1974, Lecture Notes in Comput. Sc., n° 14, p. 364-382. [MR: 433995] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.