Free Access
Issue
RAIRO. Inform. théor.
Volume 13, Number 3, 1979
Page(s) 257 - 287
DOI https://doi.org/10.1051/ita/1979130302571
Published online 01 February 2017
  1. 1.S. K. ABDALI, A Lambda Calculus Model of Programming Languages. I. Simple Constructs and II. Jumps and Procedures, J. Comp. Languages, Vol. 1, 1976, pp. 287-301 and 303-320. [Zbl: 0356.68042] [Google Scholar]
  2. 2.H. BARENDREGT, Normed Uniformity Reflexive Structures, in C. BÖHM, Ed., (λ-Calculus and Computer Science Theory, Lecture Notes in Computer Science, No. 37, Springer-Verlag, 1975, pp. 272-286. [MR: 472499] [Zbl: 0333.02021] [Google Scholar]
  3. 3.H. BARENDREGT, J. BERGSTRA, J. W. KLOP and M. VOLKEN, Degrees, Reductions and Representability in Lambda Calculus, Preprint, University of Utrecht, Department of Mathematics, 1976. [Zbl: 0399.03013] [Google Scholar]
  4. 4.C. BATINI and A. PETTOROSSI, On Recursiveness in Weak Combinatory Logic, in C. BÖHM, Ed., λ-Calculus and Computer Science Theory, Lecture Notes in Computer Science, No. 37, Springer-Verlag, 1975, pp. 297-311. [MR: 479987] [Zbl: 0332.02033] [Google Scholar]
  5. 5.C. BÖHM and M. DEZANI-CIANCAGLINI, λ-terms as Total or Partial Functions on Normal Forms in C. BÖHM, Ed., λ-Calculus and Computer Science Theory, Lecture Notes in Computer Science, Vol. 37, Springer-Verlag, 1975, pp. 96-121. [MR: 485296] [Zbl: 0342.02017] [Google Scholar]
  6. 6.M. BLUM, On the Size of Machines, Information and Control, Vol. 11, 1967, pp. 257-265. [MR: 233634] [Zbl: 0165.02102] [Google Scholar]
  7. 7.R. CANAL, Complexité de la réduction en logique combinatoire, R.A.I.R.O., Informatique théorique, Vol. 12, 1978, pp.339-367. [EuDML: 92085] [MR: 517635] [Zbl: 0432.03012] [Google Scholar]
  8. 8.R. CANAL and J. VIGNOLLE, Calculs finis et infinis dans les termes combinatoires in B. ROBINET, Ed., λ-Calcul et Sémantique Formelle des langages de programmation, L.I.T.P.-E.N.S.T.A., 1979, pp. 109-130. [Google Scholar]
  9. 9.H.B. CURRY and R. FEYS, Combinatory Logic, Vol. I, North-Holland, Amsterdam, 1958. [MR: 94298] [Zbl: 0081.24104] [Google Scholar]
  10. 10.H. B. CURRY, J. R. HINDLEY and J. P. SELDIN, Combinatory Logic, Vol. II, North-Holland, Amsterdam, 1972. [Zbl: 0242.02029] [Google Scholar]
  11. 11.M. DEZANI-CIANCAGLINI and S. RONCHI DELLA ROCCA, Computational Complexity and Structure of ʎ-terms in B. ROBINET, Ed., Programmation, Dunod, Paris, 1976, pp. 160-181. [Google Scholar]
  12. 12.M. DEZANI-CIANCAGLINI, S. RONCHI DELLA ROCCA and L. SAITTA, Complexité élémentaire dans le λ-calcul in B. ROBINET, Ed., λ-calcul et Sémantique formelle des langages de programmation, L.I.T.P.-E.N.S.T.A., 1979, pp. 183-212. [Google Scholar]
  13. 13.P. J. LANDIN, A Correspondence Between Algol 60and Church's Lambda Notation, Comm. A.C.M., Vol. 8, 1965, pp. 89-158. [Zbl: 0134.33403] [Google Scholar]
  14. 14.Y. MOSCOVAKIS, Axioms for Computation Theories-first draft in R. GANDY and M. YATES, Eds., Logic Colloquium'69, North Holland, Amsterdam, 1971, pp. 199-255. [MR: 281610] [Zbl: 0243.02034] [Google Scholar]
  15. 15.G. PLOTKIN, A set Theoretical Definition of Application, School of A.I., Memo, M.I.P.-R-95, Edinburgh,, 1975. [Google Scholar]
  16. 16.B. ROBINET, Contribution à l'étude de réalités informatiques, Thèse, Université Paris-VI, 1974. [Google Scholar]
  17. 17.D. SCOTT, Continuous Lattices, Lecture Notes in Mathematics, No. 274, Springer-Verlag, 1972, pp. 97-136. [MR: 404073] [Zbl: 0239.54006] [Google Scholar]
  18. 18.D. SCOTT, Data Types as Lattices, S.I.A.M. J., Comp., Vol. 5, 1976, pp. 522-587. [MR: 437330] [Zbl: 0337.02018] [Google Scholar]
  19. 19.S. STENLUND, Combinators, λ-terms and Proof Theory, D. Reidel Publ. Company, Dordrecht-Holland, 1972. [MR: 505306] [Zbl: 0248.02032] [Google Scholar]
  20. 20.C.P. WADSWORTH, Relation between Computational and Denotational Properties for Scott's Doo-Models of the Lambda Calculus S.I.A.M. J. Comp., Vol. 5, 1976, pp. 488-521. [MR: 505308] [Zbl: 0346.02013] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.