Free Access
Issue
RAIRO. Inform. théor.
Volume 13, Number 1, 1979
Page(s) 87 - 97
DOI https://doi.org/10.1051/ita/1979130100871
Published online 01 February 2017
  1. 1. Ya. M. BARZDIN, The Complexity of Programs Recongizing Finite Subsets of Recursively Enumerable Sets, Doklady Akad. Nauk, Vol. 182, 1968, pp. 1249-1252 (in Russian). [MR: 236009] [Zbl: 0193.31601] [Google Scholar]
  2. 2. Y. BREITBART, Tape Complexity of the Predicate to be a Complex Boolean Function, in preparation. [Google Scholar]
  3. 3. J. HARTMANIS and R. E. STEARNS, On the Computational Complexity of Algorithms, Trans. Amer. Math. Soc., 117, 1965, pp. 285-306. [MR: 170805] [Zbl: 0131.15404] [Google Scholar]
  4. 4. J. E. HOPCROFT and J. D. ULLMAN, Formal Languages and their Relation to Automata, Addison-Wesley, 1969. [MR: 237243] [Zbl: 0196.01701] [Google Scholar]
  5. 5. M. I. KANOVICH and N. V. PETRI Some Theorems About Complexity of Normal Algorithms and Computations, Dokl. Akad Nauk, S.S.S.R., Vol. 184, No. 6, 1969, pp. 1275-1276 (in Russian). [MR: 242676] [Zbl: 0181.31303] [Google Scholar]
  6. 6. V. KUZMIN, Evaluation of Boolean Functions by Finite Automata, Normal Algorithms, and Turing Machines, Prob. of Cybernetics, Vol. 13, 1965, pp. 75-96. [MR: 199062] [Google Scholar]
  7. 7. F. D. LEWIS, Classes of Recursive Functions and Their Index Sets, Zeit. f. Math. Logiku. Grund. d. Math., Vol. 17, 1971. [MR: 294130] [Zbl: 0229.02035] [Google Scholar]
  8. 8. F. D. LEWIS, The Enumerability and Invariance of Complexity Classes, J. Comp. System Sc., Vol. 5, 1971, pp. 286-303. [MR: 278951] [Zbl: 0215.04701] [Google Scholar]
  9. 9. O. B. LUPANOV, Ob odnom Methode Syntesa Schm, Izv. VUS'ov Radiofizika, Vol. 1, 1958, pp. 120-140. [Google Scholar]
  10. 10. O. B. LUPANOV, One Approach to Synthesis of Control Systems-Principle of Local Coding, Prob. of Cybernetics, Vol. 14, 1965, pp. 31-110. [MR: 201219] [Zbl: 0256.94043] [Google Scholar]
  11. 11. A. A. MARKOV, Normal Algorithms for Computation of Boolean Functions, Izv. Akad.Nauk, S.S.S.R., Vol. 31, 1967, pp. 161 (in Russian). [MR: 210587] [Zbl: 0148.24803] [Google Scholar]
  12. 12. N. V. PETRI, On Algorithms Related to Predicate and Boolean Functions, Dokl. Akad Nauk, S.S.S.R., Vol. 185, No. 1, 1969, pp. 37-39 (in Russian). [MR: 250881] [Zbl: 0193.31501] [Google Scholar]
  13. 13. N. PIPPENGER, The Realization of Monotone Boolean Functions, A.C.M. Sym. on Theory of Comp., 1976, pp. 204-211. [MR: 434654] [Zbl: 0366.94050] [Google Scholar]
  14. 14. H. Jr. ROGERS, Theory of Recursive Functions and Effective Computability, McGraw-Hill, NY, 1967. [MR: 224462] [Zbl: 0183.01401] [Google Scholar]
  15. 15. J. SAVAGE, The Complexity of Computing, 1976, Wiley and Sons, NY. [MR: 495205] [Zbl: 0391.68025] [Google Scholar]
  16. 16. C. P. SCHNORR, The Network Complexity and the Turing Machine Complexity of Finite Functions, Acta Infor., Vol. 7, 1976, pp. 95-107. [MR: 421889] [Zbl: 0338.02019] [Google Scholar]
  17. 17. L. A. SHOLOMOV, Information Complexity Problems of Minimal Realization of Boolean Functions by Combinational Schemas, Prob. of Cybernetics, Vol. 26, 1973, pp. 207-256. [Google Scholar]
  18. 18. B. A. TRACHTENBROT, On Problems Solvable by Successive Trials, Math. Found. of Comp. Sc., 1975 (Lect. Notes in Comp. Science n° 32, Springer-Verlag, pp. 125-137). [MR: 395329] [Zbl: 0357.68060] [Google Scholar]
  19. 19. S. V. YABLONSKI, On Algorithmic Difficulties in Synthesis of Minimal Schemas, Prob. of Cybernetics, Vol. 2, 1959, pp. 75-121. [MR: 129088] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.