Free Access
RAIRO. Inform. théor.
Volume 12, Number 4, 1978
Page(s) 339 - 367
Published online 01 February 2017
  1. 1.G. AUSIELLO, Abstract Computational Complexity and Cycling Computations, J.C.S.S., vol. 5, 1971, p. 118-128. [MR: 281618] [Zbl: 0225.02025] [Google Scholar]
  2. 2.G. AUSIELLO, Computational Complexity. Main Results and a Commentary, Seminaire I.R.I.A., 1972. [Google Scholar]
  3. 3.G. AUSIELLO, Complessita di Calcolo delleFunzioni. Boringhieri, Ed., 1975. [Google Scholar]
  4. 4.C. BATINI et A. PETTOROSSI, On Subrecursiveness in Weak Combinatory Logic, in λ Calculus and Computer Science Theory, Proceedings of the Symposium held in Rome, C. Bohm, Ed., Springer Verlag, 1975, p. 288-297. [MR: 479987] [Zbl: 0332.02033] [Google Scholar]
  5. 5.M. BLUM, A Machine Independent Theory of the Complexity of Recursive Functions, J.A.C.M., vol. 14, n° 2, 1967, p. 322-336. [MR: 235912] [Zbl: 0155.01503] [Google Scholar]
  6. 6.C. BOHMetM. DEZANI-CIANCAGLINI, λ-Terms as Total or Partial Functions on Normal Forms, in λ-Calculus and Computer Science Theory, Proceedings of the Symposium held in Rome, C. Bohm, Ed., Springer Verlag, 1975, p. 96-121. [MR: 485296] [Zbl: 0342.02017] [Google Scholar]
  7. 7.C. BOHM et M. DEZANI-CIANCAGLINI, Combinatorial Problems, Combinator Equations and Normal Forms, in Automata, Languages and Programming, 2nd Colloquium, University of Saarbrücken, J. Loeckx, Ed., Springer Verlag, 1974, p. 185-199. [MR: 429500] [Zbl: 0309.68037] [Google Scholar]
  8. 8.C. BOHM, M. COPPOetM. DEZANI-CIANCAGLINI, Terminations Tests inside λ-Calculus, in Automata, Languages and Programming, Fourth Colloquium, University of Turku, A. Salomaa et M. Steinby, Ed., Springer Verlag, 1977, p. 95-110. [MR: 465807] [Zbl: 0358.02025] [Google Scholar]
  9. 9.C. BOHM, The CUCH as a Formal and Description Language, in Formal Languages, Description Languages for Computer Programming, T. B. Steel, Ed., North Holland, 1966, p. 179-197, [Google Scholar]
  10. 10.R. CANAL et J. VIGNOLLE, Effet cachant et complexité de réduction en logique combinatoire, Rapport interne Université Paul-Sabatier, Laboratoire « Langages et Systèmes Informatiques », 1978. [Google Scholar]
  11. 11.R. CANAL, Étude de la complexité de calcul en logique combinatoire, Thèse 3e Cycle, Université Paul-Sabatier, 1978. [Zbl: 0432.03012] [Google Scholar]
  12. 12.H. B. CURRY, R. FEYS et W. CRAIG, Combinatory Logic, vol. 1, North Holland, Amsterdam, 1968. [MR: 244051] [Zbl: 0175.27601] [Google Scholar]
  13. 13.M. DEZANI-CIANCAGLINI et S. RONCHI DELLA ROCA, Computational Complexity and Structures of λ-Terms, in Programmation, Proceedings of the 2nd International Symposium on Programming, B. Robinet, Ed., Dunod, Paris, 1976, p. 160-181. [Google Scholar]
  14. 14.J. R. HINDLEY, B. LERCHERetJ. P. SELDIN, Introduction to CombinatoryLogic, Cambridge University Press, 1972. [Zbl: 0269.02005] [Google Scholar]
  15. 15.P. J. LANDIN, A Lambda-Calculus Approach, Advances in Programming and Non Numerical Computation, Pergamon Press, 1966, p. 97-141. [Zbl: 0203.16406] [Google Scholar]
  16. 16. J. J. LÉVY, Réductions correctes et optimales dans le Lambda-Calcul, Thèse de Doctorat, Université Paris-VII, 1978. [Google Scholar]
  17. 17. J. MCCARTHY, Recursive Functions of Symbolic Expressions and their Computat by Machine, Part I, Comm. A.C.M., vol. 3, n° 4, 1960, p. 184-195. [Zbl: 0101.10413] [Google Scholar]
  18. 18. L. NOLIN, Logique Combinatoire et Algorithmes, C.R. Académie des Sciences, Paris, t. 272, p. 1435-1438 et p. 1485-1488, série A, 1971. [MR: 285394] [Zbl: 0217.00805] [Google Scholar]
  19. 19. A. PETTOROSSI, Sulla Terminazione in Classi Subricorsive di Algorithmi, A.I.C.A., Congress Genova, 1975. [Google Scholar]
  20. 20. A. PETTOROSSI, Combinators as Tree-transducers, Colloque sur les Arbres en Algèbre et en Programmation, Lille, 1977. [Zbl: 0364.94033] [Google Scholar]
  21. 21. J. C. REYNOLDS, A simple Typeless Language Based on the Principle of Completeness and the Reference Concept, Comm. A.C.M., vol. 13, n° 5, 1970, p. 308-319. [Zbl: 0193.15101] [Google Scholar]
  22. 22. B. ROBINET, Un modèle fonctionnel des structures de contrôle, R.A.I.R.O. Informatique théorique, vol. 11, n° 3, 1977, p. 213-236. [EuDML: 92054] [MR: 502167] [Zbl: 0389.68015] [Google Scholar]
  23. 23. J. B. ROSSER, A Mathematical Logic without Variables, Annals of Maths, n° 2, 36, 1935, p. 127-150. [Zbl: 0011.00201] [MR: 1503213] [JFM: 61.0056.02] [Google Scholar]
  24. 24. C. RUGGIU, De l'organigramme à la formule, Thèse de Doctorat, Université Pierre-et-Marie-Curie, Paris, 1974. [Google Scholar]
  25. 25. L. E. SANCHIS, Types of Combinatory Logic, Notre-Dame Journal of Formal Logic (5). 1964, p. 161-180. [MR: 205849] [Zbl: 0158.24704] [Google Scholar]
  26. 26. J. VUILLEMIN, Proof Techniques for Recursive Programs, Ph. D. Thesis, Stanford, 1973. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.