Free Access
Issue
RAIRO. Inform. théor.
Volume 12, Number 2, 1978
Page(s) 99 - 108
DOI https://doi.org/10.1051/ita/1978120200991
Published online 01 February 2017
  1. 1. J. BEAUQUIER, Générateurs algébriques non ambigus in Automata, Languages and Programming, S. MICHAELSON et R. MILNER (éd.) Edinburgh University Press, 1976. p. 66-73. [Zbl: 0363.68106] [Google Scholar]
  2. 2. J. BERSTEL, Transaductions and Context-Free Languages, Teubner Verlag, 1978. [MR: 549481] [Zbl: 0424.68040] [Google Scholar]
  3. 3. L. BOASSON, Langages Algébriques, Paires Itérantes et Transductions Rationnelles, Theoretical Computer Science, Vol. 2, 1976, p. 209-223. [MR: 441012] [Zbl: 0378.68037] [Google Scholar]
  4. 4. S. GINSBURG, The Mathematical Theory of Context-free Languages, McGraw Hill, 1966. [MR: 211815] [Zbl: 0184.28401] [Google Scholar]
  5. 5. W. OGDEN, A Helpful Result for Proving Inherent Ambiguity, Math. Syst. Theory, Vol. 2, 1967, p. 191-194. [MR: 233645] [Zbl: 0175.27802] [Google Scholar]
  6. 6. R. J. PARIKH, On Context-Free Languages, J. Assoc. Comput. Math., Vol.13, 1966, p. 570-581. [MR: 209093] [Zbl: 0154.25801] [Google Scholar]
  7. 7. M. P. SCHUTZENBERGER, Sur un langage équivalent au langage de Dyck, in Logic, Methodology and Philosophy of Sciences, Vol. IV, 1973, p. 197-203. North-Holland. [MR: 445926] [Google Scholar]
  8. 8. E. SHAMIR, Some Inherently Ambiguous Context-Free Languages, Information and Control, Vol. 18, 1971, p. 355-363. [MR: 286603] [Zbl: 0227.68039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.