Free Access
Issue
RAIRO. Inform. théor.
Volume 11, Number 3, 1977
Page(s) 237 - 263
DOI https://doi.org/10.1051/ita/1977110302371
Published online 01 February 2017
  1. 1. J. J. ARSAC, Nouvelles leçons de programmation, Publication de l'I.P., n° 75-29, Université Paris VI, Paris, 1975. [Google Scholar]
  2. 2. R. BURSTALL and J. DARLINGTON, A Transformation System for Developing Recursive Programs, Journal of Ass. Comp. Mach., Vol. 24, 1977, pp. 44-67. [MR: 451816] [Zbl: 0343.68014] [Google Scholar]
  3. 3. G. BERRY et B. COURCELLE, Program Equivalence and Canonical Forms in Stable Discrete Interpretations, 3° Colloque International, Automata, Languages and Programming, S. Michaelson, R. Milner Eds., pp. 168-188, Edinburgh University Progra Press, 1976. [Zbl: 0363.68036] [Google Scholar]
  4. 4. G. COUSINEAU, Les arbres à feuilles indicées : un cadre algébrique pour l'étude des structures de contrôle, Thèse d'État, Université Paris-VII, Paris, 1977. [Google Scholar]
  5. 5. I. GUESSARIAN, Semantic Equivalence of Program Schemes and its Syntactic Characterization, 3° Colloque International, Automata, Languages and Programming, S. Michaelson, R. Milner Eds., Edinburgh University Press, 1976, pp. 189- 200. [Zbl: 0364.68019] [Google Scholar]
  6. 6. L. GUESSARIAN, Les tests et leur caractérisation syntaxique, R.A.I.R.O. série Informatique Théorique n° 2 1977, pp. 133-156. [EuDML: 92047] [MR: 448988] [Zbl: 0364.68018] [Google Scholar]
  7. 7. I. IANOV, The Logical Schemes of Algorithms, in Problems of Cybernetics, London, Pergamon Press, 1960, pp. 82-140. [Zbl: 0142.24801] [Google Scholar]
  8. 8. L. KOTT, Systèmes schématiques généralisés, Theoretical Computer Science, 3rd GI Conference, Darmstadt, Lecture Notes in Computer Science 48, H. Tzschach, H. Waldschmidt, H. K.-G. Walter Eds., Springer-Verlag, 1977, pp. 184-189. [MR: 502297] [Zbl: 0375.68015] [Google Scholar]
  9. 9. L. KOTT, Approche par le magma d'un langage de programmation type Algol : sémantique et vérification de programm, Thèse 3° cycle, Université Paris-VII, Paris, 1976. [Google Scholar]
  10. 10. L. KOTT, Sémantique algébrique et principe d'induction : l'induction de Kleene, soumis à publication, 1977. [Google Scholar]
  11. 11. J. MCCARTHY, A Basis for a Mathematical Theory of Computation, in Computer Programming and Formal Systems, P. Braffort, D. Hirschberg Eds., North-Holland, Amsterdam, 1963, pp. 33-70. [MR: 148258] [Zbl: 0203.16402] [Google Scholar]
  12. 12. Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974. [MR: 400771] [Zbl: 0353.68066] [Google Scholar]
  13. 13. Z. MANNA and J. VUILLEMIN, Fixpoint Approach to the Theory of Computation, Comm. of Ass. Comp. Mach. 15, 1972, pp. 528-536. [MR: 440993] [Zbl: 0245.68011] [Google Scholar]
  14. 14. M. NIVAT, Sur l'interprétation des schémas de programme monadique, Rapport IRIA-Laboria n°1, 1972. [Google Scholar]
  15. 15. M. NlVAT, On the Interpretation of Recursive Polyadic Schemes, Instituto Nazionale di Alta Matematica, Symposia Mathematica, Volume XV, 1974, pp. 251-281. [Google Scholar]
  16. 16. D. PARK, Fixpoint Induction and Proof of Program Properties, Machine Intelligence 5, B. Meltzer, D. Michie Eds., 1969, pp. 59-78. [MR: 323149] [Zbl: 0219.68007] [Google Scholar]
  17. 17. D. SCOTT and C. STRACHEY, Towards a Mathematical Semantics for Computer Languages, Technical Memo PRC-G, Oxford University, Oxford, 1970. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.