Free Access
Issue
RAIRO. Inform. théor.
Volume 11, Number 2, 1977
Page(s) 133 - 156
DOI https://doi.org/10.1051/ita/1977110201331
Published online 01 February 2017
  1. 1. A. ARNOLD et M. DAUCHET, Bitransductions de forêts, Proceedings of the 3rd Int. Col. «Automata, Languages, Programming », Edinburgh Univ. Press, Edinburgh, 1976p. 74-86. [Zbl: 0363.68104] [Google Scholar]
  2. 2. J. ARSAC, Nouvelles leçons de programmation, Publications de l'Institut de Programmation, n° 75-29, Université Paris 6, Paris, 1975. [MR: 329303] [Google Scholar]
  3. 3. E. ASHCROFT et Z. MANNA, The translation of GO TO programs to WHILE programs, Proceedings of the IFIP conference 1971, North-Holland, Amsterdam, 1971, p. 250-255. [MR: 400762] [Google Scholar]
  4. 4. J. W. DE BAKKER et D. SCOTT, A theory of programs, IBM seminar, Vienne, 1969, manuscrit non publié. [Google Scholar]
  5. 5. G. BERRY et J. J. LÉVY, Minimal and optimal computations of recursive programs, à paraître. [Zbl: 0388.68012] [Google Scholar]
  6. 6. G. BOUDOL, Langages d'arbres algébriques, à paraître dans la RAIRO, Paris, 1977. [Google Scholar]
  7. 7. A. K. CHANDRA, On the properties and applications of program schemes, Ph. D. Thesis, Stanford, 1973. [Google Scholar]
  8. 8. P. M. COHN, Universal algebra, Harper's series in modem mathematics, Londres, 1965. [MR: 175948] [Zbl: 0141.01002] [Google Scholar]
  9. 9. B. COURCELLE et I. GUESSARIAN, On algebraic families of interpretations, à paraître. [Zbl: 0392.68009] [Google Scholar]
  10. 10. G. COUSINEAU et J. M. RIFFLET. Langages d'interprétation des schémas récursifs, RAIRO, série rouge, vol. 9, Paris, 1975. p. 21-42. [EuDML: 92014] [MR: 411250] [Zbl: 0331.68007] [Google Scholar]
  11. 11. O. J. DAHL, E. DIJKSTRA et C. A. R. HOARE, Structured programming, APIC studies on data processing, n° 8, Academic Press. Londres, 1972. [MR: 433938] [Zbl: 0267.68001] [Google Scholar]
  12. 12. R. W. FLOYD, Assigning meanings to programs, Proceedings of a symposium in applied mathematics, Vol. 19, Mathematical aspects of computer science, Rhodes Island, Amer. Math. Soc, 1967, p. 19-32. [MR: 235771] [Zbl: 0189.50204] [Google Scholar]
  13. 13. R. W. FLOYD et D. E. KNUTH, Notes on avoiding GO TO statements, Information processing letters, 1, 1971, p. 23-31. [Zbl: 1260.68047] [Google Scholar]
  14. 14. E. P. FRIEDMANN, Deterministic languages and monadic recursion schemes, Ph. D. Thesis, Harvard University, 1974. [Google Scholar]
  15. 15. S. A. GREIBACH, Theory of program structures : schemes, semantics and verification, Lecture notes in computer science, Vol. 36, Springer-Verlag, 1975. [MR: 431768] [Zbl: 0345.68002] [Google Scholar]
  16. 16. I. GUESSARIAN, Schémas de programme récursifs polyadiques : équivalences et classes d'interprétations, Thèse d'État, Université Paris 7, Paris, 1975. [Google Scholar]
  17. 17. I. GUESSARIAN, Équivalences dans l'algèbre des schémas de programme, Proceedings of the 1st Programming symposium, Lecture notes in computer science, Vol. 19, Springer-Verlag, 1974, p. 204-220. [MR: 451823] [Zbl: 0296.68015] [Google Scholar]
  18. 18. I. GUESSARIAN, Semantic equivalence of program schemes and its syntactic characterization, Proceedings of the 3rd Int. Col. «Automata, Languages, Programming», Edinburgh Univ. Press, Edinburgh, 1976, p. 189-200. [Zbl: 0364.68019] [Google Scholar]
  19. 19. I. IANOV, The logical schemes of algorithms, Problems of cybernetics, Pergamon Press, 1960, p. 82-140. [Zbl: 0142.24801] [Google Scholar]
  20. 20. L. KOTT, Sémantique algébrique d'un langage de programmation type ALGOL, à paraître dans la RAIRO, Paris, 1977. [Zbl: 0369.68008] [Google Scholar]
  21. 21. D. LUCKHAM, D. PARK et M. PATERSON, On formalized computer programs, J. Comp. Sys. Sc., Vol. 4, 1970, 220-249. [MR: 275717] [Zbl: 0209.18704] [Google Scholar]
  22. 22. J. MAC CARTHY, A basis for a mathematical theory of computation, Computer programming and formal Systems, P. Braffort, D. Hirschberg Eds., North-Holland, Amsterdam, 1963, p. 33-70. [MR: 148258] [Zbl: 0203.16402] [Google Scholar]
  23. 23. Z. MANNA, Mathematical theory of computation, Mac Graw Hill, Londres, 1975. [MR: 400771] [Zbl: 0353.68066] [Google Scholar]
  24. 24. Z. MANNA, S. NESS et J. VUILLEMIN, Inductive methods for proving properties of programs, C. Ass. Comp. Mac. 16, 1973, p. 491-502. [MR: 366080] [Zbl: 0278.68019] [Google Scholar]
  25. 25. R. MILNER, Equivalences on program schemes, J. Comp. Sys. Sc, Vol. 4, 1970, p. 205-219. [MR: 276097] [Zbl: 0209.18705] [Google Scholar]
  26. 26. M. NIVAT, On the interpretation of recursive polyadic program schemes, Atti del convegno di informatica teorica, Symposia Mathematica, Vol. 15, Rome, 1975, p. 256-281. [MR: 391563] [Zbl: 0346.68041] [Google Scholar]
  27. 27. M. NIVAT, Formalisation de la sémantique des langages de programmation, Bulletin de liaison de la recherche en informatique et automatique, n° 23, IRIA, Paris, 1976, p. 2-13. [Zbl: 0333.68012] [Google Scholar]
  28. 28. D. PARK, Fixpoint induction and proofs of program properties, Machine Intelligence, Vol. 5, Edinburgh University Press, Edinburgh, 1970, p. 59-78. [MR: 323149] [Zbl: 0219.68007] [Google Scholar]
  29. 29. M. PATERSON, Equivalence problems in a model of computation, Ph. D. Thesis, Artificial intelligence laboratory, M.I.T., 1967. [Google Scholar]
  30. 30. J. D. RUTLEDGE, On Ianov's program schemata, J. Ass. Comp. Mac, Vol. 11, 1964, p. 1-9. [MR: 166097] [Zbl: 0121.12107] [Google Scholar]
  31. 31. D. SCOTT, The lattice of flow diagrams, Symposium on semantics of algorithmic languages, Lecture notes in mathematics, Vol. 188, Springer-Verlag, 1971, p. 311-372. [MR: 278849] [Zbl: 0228.68016] [Google Scholar]
  32. 32. H. R. STRONG, Translating recursion equations into flowcharts, J. Comp. Sys. Sc, Vol. 5, 1971, p. 254-285. [MR: 278732] [Zbl: 0239.68002] [Google Scholar]
  33. 33. N. WIRTH, Systematic programming, Prentice Hall, 1973. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.