Free Access
Issue
R.A.I.R.O. Informatique théorique
Volume 10, Number R2, 1976
Page(s) 57 - 81
DOI https://doi.org/10.1051/ita/197610R200571
Published online 01 February 2017
  1. 1. H. BEKIC, Definable Operations in General Algebras and the Theoryof Automata and Flowcharts, I B.M., Vienna, 1969. [Google Scholar]
  2. 2. G. BIRKHOFF, Lattice Theory, American Math. Soc, Coll., vol 25, 3e édition, 1967. [MR: 227053] [Zbl: 0153.02501] [Google Scholar]
  3. 3. P. M. COHN, Universal Algebra, Van Nostrand, Princeton, 1965. [MR: 175948] [Zbl: 0141.01002] [Google Scholar]
  4. 4. N. CHOMSKY, On Certain Formal Properties of Grammars, Inf. and Control, 2, 1959, p. 137-167. [MR: 105365] [Zbl: 0088.10801] [Google Scholar]
  5. 5. J. W. DE BAKKER, Fixed Points in Programming Theory in Foundations of Computer Science (J. W. De BAKKER ed., Mathematical Center Tracts, 63, Mathematisch Centrum Amsterdam, 1974, p. 1-49. [Google Scholar]
  6. 6. W. P. DE ROEVER, Recursion and Parameters Mechanisms, Axiomatic Approach in Automata, Languages and Programming (J. LOECKX ed.), Lectures Notes in Computer Sciences, vol. 14, Springer Verlag, Berlin 1974, p. 34-65. [MR: 428768] [Zbl: 0302.68019] [Google Scholar]
  7. 7. S. EILENBERG, Automata Languages and Machines, vol. A, Academic Press (1974). [MR: 530382] [Zbl: 0317.94045] [Google Scholar]
  8. 8. S. EILENBERG et J. B. WRIGHT, Automata in General Algebras, Inf. and Control, 11, 1967, p. 452-470. [MR: 223285] [Zbl: 0175.27902] [Google Scholar]
  9. 9. N. D. GAUTAM, The Validity of Equations of Complex Algebras, Arch. Math. Logik Grundlagenforsch, 3, 1957, p. 117-127. [EuDML: 137738] [MR: 92750] [Zbl: 0081.26005] [Google Scholar]
  10. 10. G. GRATZER, Universal Algebra, Van Nostrand, 1968. [MR: 248066] [Zbl: 0182.34201] [Google Scholar]
  11. 11. J. GRUSKA, A Characterization of Context Free Languages, J. Comput System Sc., 5, 1971, p. 353-364. [MR: 327090] [Zbl: 0226.68035] [Google Scholar]
  12. 12. P. HITCHCOCK et D. PARK, Induction Rules and Termination Proofs in Automata, Languages and Programming (M. NIVAT ed.), North-Holland, 1972, p. 225-251. [MR: 495103] [Zbl: 0387.68011] [Google Scholar]
  13. 13. J. E. HOPCROFT et J. D. ULLMANN, Formal Languages and Their Relation to Automata, Addison Wesley, 1969. [MR: 237243] [Zbl: 0196.01701] [Google Scholar]
  14. 14. S. G. KLEENE, Representations of Events in Nerves Nets and Finite Automata in Automata Studies (C. E. SHANNON and J. MCCARTHY eds.), Princeton Univ. Press, Princeton, New Jersey, 1956, p. 3-42. [MR: 77478] [Google Scholar]
  15. 15. F. W. LAWVERE, Functorial Semantics of Algebraic Theories, Proc. Math. Acad. Sc. U.S.A., 50, 1963, p. 869-872. [MR: 158921] [Zbl: 0119.25901] [Google Scholar]
  16. 16. P. LESCANNE, Étude de quelques théories des langages et généralisation du théorème de Kleene, Thèse de 3e Cycle, Université de Nancy, 1971. [Google Scholar]
  17. 17. I. P. MC WHIRTER, Substitution Expressions, J. Comput Systems Sc., 5, 1971, p. 629-637. [MR: 309371] [Zbl: 0229.68026] [Google Scholar]
  18. 18. J. MEZEI et J. B. WRIGHT, Algebraic Automata and Context-Free Sets, Inf. and Control, 11, 1967, p. 3-29. [MR: 234775] [Zbl: 0155.34301] [Google Scholar]
  19. 19. B. PAREIGIS, Categories and Functors, Academic Press, 1970. [MR: 265428] [Zbl: 0211.32402] [Google Scholar]
  20. 20. D. SCOTT et J. W. DE BAKKER, A Theory of Programs, unpublished notes I.B.M. Seminar, Vienna, 1969. [Google Scholar]
  21. 21. J. W. THATCHER et J. B. WRIGHT, Generalized Automata Theory with an Application to a Decision Problem of Second Order Logic, Math. Systems Theory- 2, 1968, p. 57-81. [MR: 224476] [Zbl: 0157.02201] [Google Scholar]
  22. 22. R. TURNER, An Infinite Hierarchy of Terms Languages and Approach to Mathematical Complexity in Automata, Languages and Programming (M. NIVAT ed.), North Holland, 1972, p. 593-608. [MR: 405947] [Zbl: 0278.68069] [Google Scholar]
  23. 23. M. WAND, A Concrete Approach to Abstract Recursive Definitions in Automata, Languages and Programming (M. NIVAT ed.), North Holland, 1972, p. 331-341. [MR: 366767] [Zbl: 0278.68066] [Google Scholar]
  24. 24. J. ENGELFRIET, Simple Program Schemes and Formal Languages, Lecture Notes in Computer Science, 20, Springer Verlag, 1974. [MR: 502130] [Zbl: 0288.68030] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.