Free Access
Issue
R.A.I.R.O. Informatique théorique
Volume 10, Number R2, 1976
Page(s) 33 - 49
DOI https://doi.org/10.1051/ita/197610R200331
Published online 01 February 2017
  1. 1. E. BIERMAN, Realization of Star-Free Events, M.A.Sc. Thesis, Department of Electrical Engineering, University of Waterloo, Waterloo, Ont., Canada, 1971. [Google Scholar]
  2. 2. J. A. BRZOZOWSKI, Canonical Regular Expressions and Minimal State Graphs for Definite Events, Mathematical Theory of Automata, New York, 1962, pp. 529-561, Brooklyn, Polytechnic Institute of Brooklyn, 1963 (Symposia Series, 12). [MR: 175719] [Zbl: 0116.33605] [Google Scholar]
  3. 3. J. A. BRZOZOWSKI, Run Languages, Bericht Nr. 87, Institut fûr Rechner-und Programstrukturen, Gesellschaft fur Mathematik und Datenverarbeitung mbH, Bonn, Germany, July 1975, 17 pp. [MR: 431799] [Google Scholar]
  4. 4. J. A. BRZOZOWSKI, On aperiodic I-monoids, Research Report CS-75-28, Computer Science Department, University of Waterloo, Waterloo, Ont., Canada, November 1975, 18 pp. [Google Scholar]
  5. 5. J. A. BRZOZOWSKI, K. CULIK II, and A. GABRIELIAN, Classification of Noncounting Events, J. Computer and System Sc, Vol. 5, 1971, pp. 41-53. [MR: 286578] [Zbl: 0241.94050] [Google Scholar]
  6. 6. J. A. BRZOZOWSKI and I. SIMON, Characterizations of Locally Testable Events, Discrete Mathematics, Vol. 4, 1973, pp. 243-271. [MR: 319404] [Zbl: 0255.94032] [Google Scholar]
  7. 7. N. CHOMSKY and M. P. SCHÜTZENBERGER, The Algebraic Theory of Context-Free Languages, Computer Programming and Formal Systems, edited by P. BRAFFORT and D. HIRSCHBERG, pp. 118-161, Amsterdam, North Holland Publishing Company, 1963. [MR: 152391] [Zbl: 0148.00804] [Google Scholar]
  8. 8. R. S. COHEN and J. A. BRZOZOWSKI, Dot-Depth of Star-Free Events, J. Computer & System Sc., Vol. 5, 1971, pp. 1-16. [MR: 309676] [Zbl: 0217.29602] [Google Scholar]
  9. 9. S. EILENBERG, Automata, Languages, and Machines, Vol. A, New York, Academic Press, 1974 (Pure and Applied Mathematics Series, 59). [MR: 530382] [Zbl: 0317.94045] [Google Scholar]
  10. 10. S. EILENBERG, Automata, Languages and Machines, Vol. B, New York, Academic Press, 1976. [MR: 530383] [Zbl: 0359.94067] [Google Scholar]
  11. 11. A. GINZBURG, About Some Properties of Definite, Reverse Definite and Related Automata, I.E.E.E. Trans. Electronic Computers EC-15, 1966, pp. 806-810. [Zbl: 0156.01904] [Google Scholar]
  12. 12. S. C. KLEENE, Representation of Events in Nerve Nets and Finite Automata, Automata Studies, edited by CE. SHANNON and J. MCCARTHY, pp. 3-41, Princeton, Princeton University Press, 1954, (Annals of Mathematics Studies, 34). [MR: 77478] [Google Scholar]
  13. 13. R. MCNAUGHTON, Algebraic Decision Procedures for Local Testavility, Math. Systems Theory, Vol. 8, 1974, pp. 60-76. [MR: 392544] [Zbl: 0287.02022] [Google Scholar]
  14. 14. R. MCNAUGHTON and S. PAPERT, Counter-Free Automata, Cambridge, The M.I.T. Press, 1971, (MIT Research Monographs, 65). [MR: 371538] [Zbl: 0232.94024] [Google Scholar]
  15. 15. Yu. T. MEDVEDEV, On the Class of Events Representable in a Finite Automaton (translated from Russian), Sequential Machines-Selected Papers, edited by E.F. MOORE, Reading, Mass., Addison-Wesley, 1964. [Zbl: 0199.04202] [Google Scholar]
  16. 16. A. R. MEYER, A Note on Star-Free Events, J. Assoc. Comp. Machin., Vol. 16, 1969, pp. 220-225. [MR: 238624] [Zbl: 0224.94060] [Google Scholar]
  17. 17. M. PERLES, O. RABIN and E. SHAMIR, The Theory of Definite Automata, I.E.E.E. Trans. Electronic Computers EC-12, 1963, pp. 233-143. [MR: 153518] [Zbl: 0158.01002] [Google Scholar]
  18. 18. D. PERRIN, Sur certains semigroupes syntaxiques, Séminaires de l'I.R.I.A. Logiques et Automates, 1971, pp. 169-177. [Zbl: 0266.20066] [Google Scholar]
  19. 19. M. P. SCHÜTZENBERGER, On Finite Monoids Having Only Trivial Sub-groups, Inform. and Control, Vol. 8, 1965, pp. 190-194. [MR: 176883] [Zbl: 0131.02001] [Google Scholar]
  20. 20. M. P. SCHÜTZENBERGER, On a Family of Sets Related to McNaughton's L-Language, Automata Theory, edited by E.R. CAIANIELLO, pp. 320-324, New York, Academic Press, 1966. [MR: 219365] [Zbl: 0192.07902] [Google Scholar]
  21. 21. M. P. SCHÜTZENBERGER, Sur le produit de concaténationnon ambigu, (to appear in Semigroup Forum). [EuDML: 134196] [MR: 444824] [Zbl: 0373.20059] [Google Scholar]
  22. 22. M. STEINBY, On Definite Automata and Related Systems, Ann. Acad. Scient. Fennicae, series A.I., 1969, No. 444, 57 pp. [MR: 258541] [Zbl: 0253.94030] [Google Scholar]
  23. 23. I. SIMON, Hierarchies of Events With Dot-Depth One, Ph. D. Thesis, Dept. of Applied Analysis & Computer Science, University of Waterloo, Waterloo, Ont., Canada, 1972. [MR: 2623305] [Google Scholar]
  24. 24. I. SIMON, Piecewise Testable Events, 2nd GI-Professional Conference on Automata Theory and Formal Languages, Kaiserslautern, Germany, May 1975. (To appear in Lecture Notes in Computer Science, Springer-Verlag, Berlin). [MR: 427498] [Zbl: 0316.68034] [Google Scholar]
  25. 25. Y. ZALCSTEIN, Locally Testable Languages, J. Computer and System Sc., Vol. 6, 1972, pp. 151-167. [MR: 307538] [Zbl: 0242.68038] [Google Scholar]
  26. 26. Y. ZALCSTEIN, Locally Testable Semigroups, Semigroup Forum, Vol. 5, 1973, pp. 216-227. [EuDML: 133940] [MR: 320194] [Zbl: 0273.20049] [Google Scholar]
  27. 27. Y. ZALCESTEIN, Syntactic Semigroups of Some Classes of Star-Free Languages, Automata, Languages and Programming, Proceedings of a Symposium, Rocquencourt, 1972, pp. 135-144, Amsterdam, North-Holland Publishing Company, 1973. [MR: 378498] [Zbl: 0277.94039] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.