Free Access
Issue
R.A.I.R.O. Informatique théorique
Volume 10, Number R1, 1976
Page(s) 47 - 82
DOI https://doi.org/10.1051/ita/197610R100471
Published online 01 February 2017
  1. 1. G. BERRY, Calculs ascendants des programmes récursifs. Thèse de 3e cycle, Université Paris VII, 1976.
  2. 2. R. BURSTALL. Proving Properties of Programs by Structural Induction. Computer Journal, vol. 12, 1969, p. 41-48. [Zbl: 0164.46202]
  3. 3. S. COOK and R. SETHI. Storage Requirements for Deterministic Polynomial Time Recognizible Languages. Proc. 6th annual symposium on theory of Computing, Seattle, Washington, 1974, p. 33-39. [MR: 421161] [Zbl: 0412.68078]
  4. 4. D. LUCKHAM, D. PARK and M. PATERSON. On Formalised Computer Programs. Journal of Computer and System Sciences, vol. 4, No. 3, 1970, p. 220-250. [MR: 275717] [Zbl: 0209.18704]
  5. 5. Z. MANNA. Mathematical theory of Computation. McGraw-Hill, (Computer science series), 1975. [MR: 400771] [Zbl: 0353.68066]
  6. 6. Z. MANNA and J. VUILLEMIN. Fixpoint Approach to the Theory of Computation. Comm. ACM, vol. 15, No. 7, 1972, p. 528-536. [MR: 440993] [Zbl: 0245.68011]
  7. 7. R. MILNER. Implementation and Applications of Scott's Logic for Computable Functions. Proceedings ACM Conference on Proving assertions about programs, Las Cruces, New Mexico, 1972, p. 1-5.
  8. 8. J. H. MORRIS. Another Recursion Induction Principle. Comm. ACM, vol. 14, No. 5, 1971, p. 351-354. [MR: 290963] [Zbl: 0226.68026]
  9. 9. M. NIVAT. On the Interpretation of Recursive Program Schemes, Symposia Mathematica, Vol. XV, Instituto Nazionale di Alta Matematica, Italy, 1975, p. 255-281. [MR: 391563] [Zbl: 0346.68041]
  10. 10. D. PARK. Fixpoint Induction and Proofs of Program Properties, Machine Intelligence 5, Edinburgh University press, 1969, p. 59-77. [MR: 323149] [Zbl: 0219.68007]
  11. 11. H. G. RICE. Recursion and Iteration. Comm. ACM, vol. 8, No. 2, 1965, p. 114-115. [Zbl: 0129.10304]
  12. 12. D. SCOTT. Outline of a Mathematical Theory of Computation. Programming research group monography n° 2, Oxford University, 1970.
  13. 13. D. SCOTT and C. STRACHEY. Towards a Mathematical Semantles for Programming Languages. Programming research group monography No. 6, Oxford University, 1972.
  14. 14. J. VUILLEMIN. Proof Techniques for Recursive Programs. Ph. D. thesis, Computer Science Department, Stanford University, U.S.A., 1973.
  15. 15. J. VUILLEMIN. Syntaxe, sémantique et axiomatique d'un language de programmation simple. Thèse de doctorat d'état ès-sciences mathématiques, Université Paris VI, Paris, 1974. [Zbl: 0327.68006]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.