Free Access
R.A.I.R.O. Informatique théorique
Volume 10, Number R1, 1976
Page(s) 29 - 38
Published online 01 February 2017
  1. 1. M. BLUM. A Machine-Independent Theory of the Complexity of Recursive Function. J. Assoc. Comp. Mach., vol. 14, 1967, p. 322-336. [MR: 235912] [Zbl: 0155.01503] [Google Scholar]
  2. 2. M. BLUM and I. MARQUES. On Complexity Properties of Recursively Enumerable Sets. J. Symbolic Logic, vol. 38, 1973, p. 579-593. [MR: 332455] [Zbl: 0335.02024] [Google Scholar]
  3. 3. M. J. FISCHER and M. O. RABIN. Super-Exponential Complexity of Pressburger Arithmetic. In SIAM-AMS Proceedings, vol. 7, p. 27-41. American Math. Soc. Providence, RI, 1974. [MR: 366646] [Zbl: 0319.68024] [Google Scholar]
  4. 4. J. GILL and M. BLUM. On Almost Everywhere Complex Recursive Functions. J. Assoc. Comp. Mach., vol. 21, 1974, p. 425-435. [MR: 457165] [Zbl: 0315.68038] [Google Scholar]
  5. 5. J. HARTMANIS and J. E. HOPCROFT. An Overview of the Theory of Computational Complexity. J. Assoc. Comp. Mach., vol. 18, 1971, p. 444-475. [MR: 288028] [Zbl: 0226.68024] [Google Scholar]
  6. 6. N. LYNCH. On Reducability to Complex or Sparse Sets. J. Assoc. Comp. Mach., vol. 22, 1975, p. 341-345. [MR: 379150] [Zbl: 0311.68037] [Google Scholar]
  7. 7. H. ROGERS. The Theory of Recursive Functions and Effective Computability, McGraw Hill, New York, 1967. [MR: 224462] [Zbl: 0183.01401] [Google Scholar]
  8. 8. L. J. STOCKMEYER, The Complexity of Decision Problems in Automata Theory and Logic. Project MAC, Report MACTR-133, MIT, Cambridge, Mass., July 1974. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.