Issue |
RAIRO-Theor. Inf. Appl.
Volume 50, Number 2, April-June 2016
|
|
---|---|---|
Page(s) | 145 - 165 | |
DOI | https://doi.org/10.1051/ita/2016018 | |
Published online | 13 October 2016 |
Delay Games with WMSO+U Winning Conditions∗
Reactive Systems Group, Saarland
University, 66123
Saarbrücken,
Germany.
zimmermann@react.uni-saarland.de
Received:
29
January
2016
Accepted:
23
August
2016
Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent’s moves. We consider delay games with winning conditions expressed in weak monadic second order logic with the unbounding quantifier, which is able to express (un)boundedness properties. We show that it is decidable whether the delaying player has a winning strategy using bounded lookahead and give a doubly-exponential upper bound on the necessary lookahead. In contrast, we show that bounded lookahead is not always sufficient: we present a game that can be won with unbounded lookahead, but not with bounded lookahead. Then, we consider such games with unbounded lookahead and show that the exact evolution of the lookahead is irrelevant: the winner is always the same, as long as the initial lookahead is large enough and the lookahead is unbounded.
Mathematics Subject Classification: 68Q45
Key words: Delay games / infinite games / unbounding quantifier / max-regular languages
© EDP Sciences 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.