Issue |
RAIRO-Theor. Inf. Appl.
Volume 38, Number 2, April-June 2004
|
|
---|---|---|
Page(s) | 137 - 161 | |
DOI | https://doi.org/10.1051/ita:2004008 | |
Published online | 15 June 2004 |
Time and space complexity of reversible pebbling
Department of Computer Science,
Faculty of Mathematics, Physics and Informatics,
Comenius University,
Mlynská Dolina,
842 48 Bratislava, Slovakia; rkralovi@dcs.fmph.uniba.sk.
Received:
5
November
2002
Accepted:
16
February
2004
This paper investigates one possible model of reversible computations, an important paradigm in the context of quantum computing. Introduced by Bennett, a reversible pebble game is an abstraction of reversible computation that allows to examine the space and time complexity of various classes of problems. We present a technique for proving lower and upper bounds on time and space complexity for several types of graphs. Using this technique we show that the time needed to achieve optimal space for chain topology is Ω(nlgn) for infinitely many n and we discuss time-space trade-offs for chain. Further we show a tight optimal space bound for the binary tree of height h of the form h + Θ(lg*h) and discuss space complexity for the butterfly. These results give an evidence that reversible computations need more resources than standard computations. We also show an upper bound on time and space complexity of the reversible pebble game based on the time and space complexity of the standard pebble game, regardless of the topology of the graph.
Mathematics Subject Classification: 68Q10 / 68Q25
Key words: Reversible computations / pebbling.
© EDP Sciences, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.