Issue |
RAIRO-Theor. Inf. Appl.
Volume 33, Number 1, January Fabruary 1999
|
|
---|---|---|
Page(s) | 1 - 19 | |
DOI | https://doi.org/10.1051/ita:1999102 | |
Published online | 15 August 2002 |
Learning deterministic regular grammars from stochastic samples in polynomial time
1
Departamento
de Lenguajes y Sistemas Informáticos,
Universidad de Alicante, 03071 Alicante, Spain; (carrasco@dlsi.ua.es)
2
Departamento
de Lenguajes y Sistemas Informáticos,
Universidad de Alicante, 03071 Alicante, Spain; (oncina@dlsi.ua.es)
Received:
June
1997
Accepted:
May
1998
In this paper, the identification of stochastic regular languages is addressed. For this purpose, we propose a class of algorithms which allow for the identification of the structure of the minimal stochastic automaton generating the language. It is shown that the time needed grows only linearly with the size of the sample set and a measure of the complexity of the task is provided. Experimentally, our implementation proves very fast for application purposes.
Résumé
Dans cet article, on étudie l'identification de langages réguliers stochastiques. Dans ce but, nous proposons une classe d'algorithmes permettant l'identification de la structure de l'automate stochastique minimal qu'engendre le langage. On trouve que le temps nécessaire croît linéairement avec la taille de l'échantillon et on donne une mesure de la complexité de l'identification. Expérimentalement, notre mise en œuvre est très rapide, ce qui la rend très intéressante pour des applications.
© EDP Sciences, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.